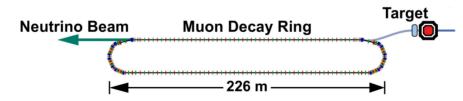

ENUBET

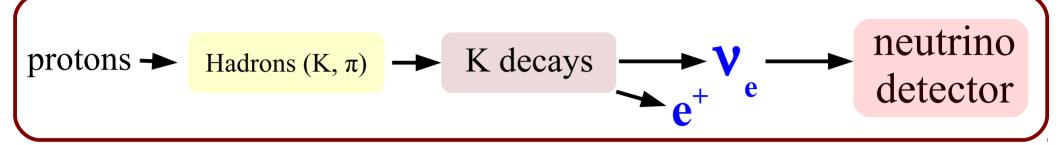
Enhanced NeUtrino BEams from kaon Tagging

A. Longhin (PI, INFN-PD) Hyper-K open meeting London, 10/07/2016

Host Institution


ERC-Consolidator Grant-2015, nº 681647 (PE2)

The ENUBET approach


In the last ten years, our knowledge of v cross sections has improved enormously. Vigorous experimental programme (T2K, MINERvA, SCIBooNE, MiniBooNE etc.) motivated by the needs of the precision oscillation physics. Still:

- no absolute σ with precision < 10% (mainly flux systematics)
 - Mitigation: hadro-production exp.s. SPY, HARP, NA61
 - Mitigation: constrain flux using interactions with e ? small cross section
- v_e cross sections are sparse (Gargamelle, T2K, NovA). Beam contamination.
 - we do not have intense sources of v_e in the GeV energy range
 - (ideal) solution: i.e. decay in flight of stored muons (nuSTORM)

ENUBET: build a **pure source of** v_e employing **conventional technologies** reaching a **precision on the initial flux < 1%**

Tagged electron neutrino beams

The problem of predicting the v_{e} flux at the neutrino detector

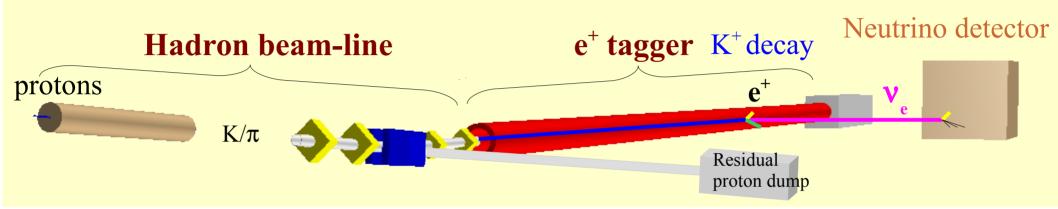
A traditional beam

- Passive decay region
- v_{e} flux relies on **ab-initio simulations** of the full chain
- **large uncertainties** from hadro-production

The tagged beam

• Fully instrumented decay region

$$\mathbf{K}^+ \rightarrow \mathbf{e}^+ \mathbf{v}_{\mathbf{e}} \pi^0 \rightarrow \text{large angle } \mathbf{e}^+$$


• v_e flux prediction = e^+ counting

Towards the first tagged v_{e} beam

A baseline setup to implement this idea proposed in:

<u>A. Longhin, F. Terranova, L. Ludovici</u> Eur. Phys. J. C (2015) 75:155

- Hadron beam-line: collects, focuses, transports K⁺ to the e⁺ tagger
- **e**⁺ **tagger:** real-time, "inclusive" **monitoring** of produced **e**⁺

Positron tagging: uncertainties from K hadro-production, PoT, hadron beamline efficiency become irrelevant for the v_e flux prediction

Hadron collimation:

allows having only decay products in the tagger.

- \rightarrow tolerable rates
- \rightarrow good S/N

	tagger	
p = 8.5 GeV ± 20% θ < 3 mrad	Κ+, π+	Beam envelope
• • • • • • • • • • • • • • • • • • • •		

The ENUBET goals and program

Demonstrate experimentally that a newconcept v_e source, with $\times 10$ better precision is feasible

 $\rightarrow \sigma(v_e)$ 1% sys. + 1% overall stat. errors (10.000 events) in realistic terms

What's peculiar with ENUBET:

- a compelling, new physics case: a beam design **optimized for** $\sigma(v_e)$
- taking advantage of the progress in **fast**, **cheap**, **radiation-hard detectors**

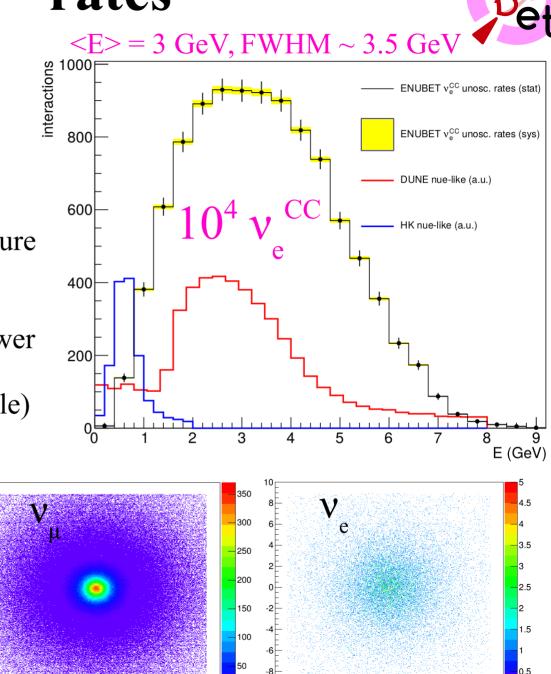
ERC program: 2 pillars

- e⁺ tagger prototype validated at test beams
- a detailed design for the hadron beam-line

By-products

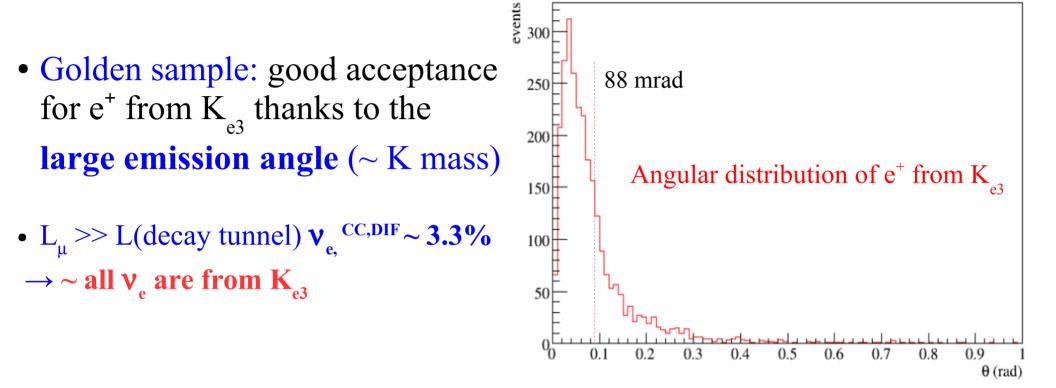
- **calorimetry** \rightarrow new low-cost, ultra-compact detectors
- accelerator physics \rightarrow novel extraction schemes for fixed-target, beam-dump exp.

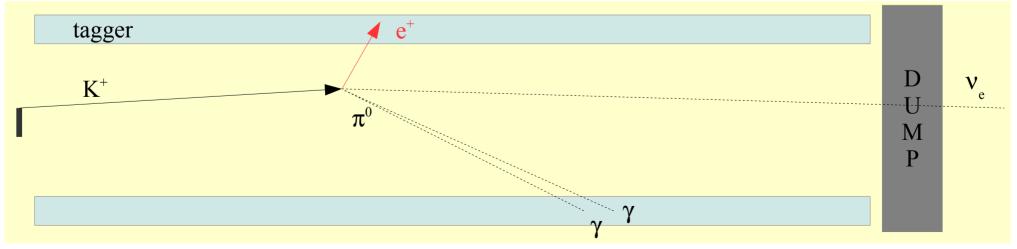
NB. $\sigma(v_{a})$ is to date a "green field" >[∞]30 ENUBET - tagged beam ENUBET ν_{e}^{CC} rates (a.u.) 20 T2K Gargamelle NOvA GENIE 2.86 +/- 1 σ on 12C 10 10 E, (GeV)


The complete picture to move to a full experiment

v detector and v_e^{CC} rates

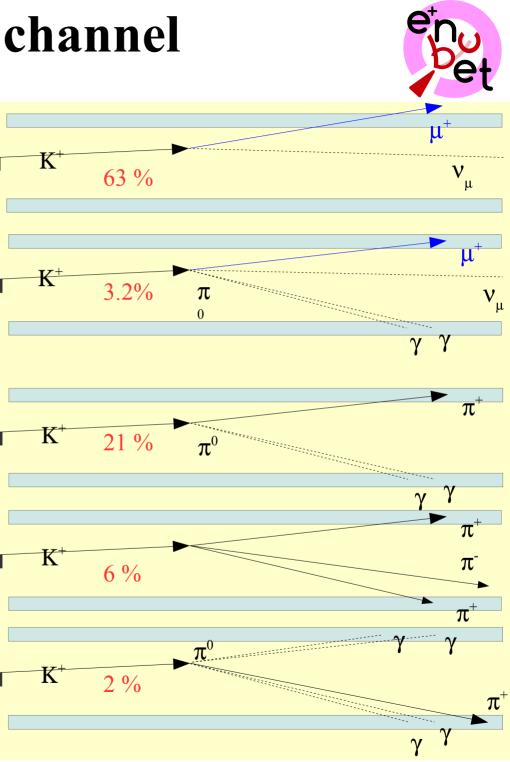
- At 100 m from the hadron window
- A 500 t mass (< ICARUS T600)
- Interesting region of long baseline future projects is covered
- Further tuning foreseen to go even lower in energy preserving an acceptable positron purity (some ideas on the table)
- tagger geometrical acceptance: 85% of v_e^{CC} with a tagged e⁺ (15% in the forward "hole")
 1.95 × 10¹³ K⁺/v^{CC}
- Radial profiles at the v detector


10


10 July 2016, London, HK open meeting

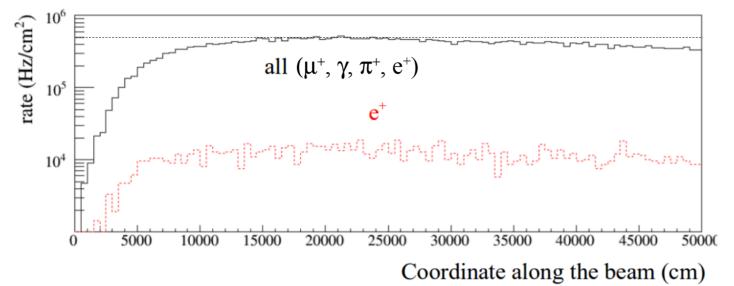
6

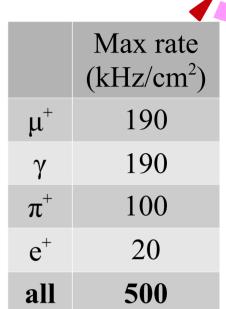
The golden channel: $K^+ \rightarrow \pi^0 e^+ \nu_e$


ENUBET, A. Longhin

10 July 2016, London, HK open meeting

Other K decays: silver channel

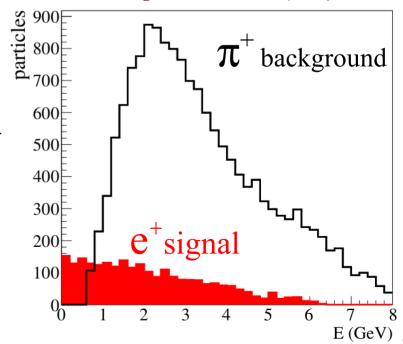

- K decays are the only π source in the tagger \rightarrow can be used with the K_{e3} "golden sample" to infer the v_e flux
 - GOLDEN $\phi(v_e) \sim N(e^+)/BR_{Ke3}$ SILVER $\phi(v_e) \sim N(\pi^+)/BR_{K \to \pi X}$
- $\pi^{+/0}$ from K⁺ can mimic an e⁺ and pollute the K_{e3} golden sample \rightarrow must be **discriminated**:
 - 1) calorimetric rejection using longitudinal energy profile
 - 2) tagging vertices w. timing:


 $\sigma_t O(100 \text{ ps}) \sim \sigma_{zVTX} O(1m) \text{ veto } \pi^+$ from the decay vertex rejects fake e⁺ from K⁺ $\rightarrow \pi^+ \pi^- \pi^+$ and K⁺ $\rightarrow \pi^+ \pi^0$

The e⁺ tagger challenges

Injecting $10^{10}\pi^+$ in a 2 ms spill \rightarrow

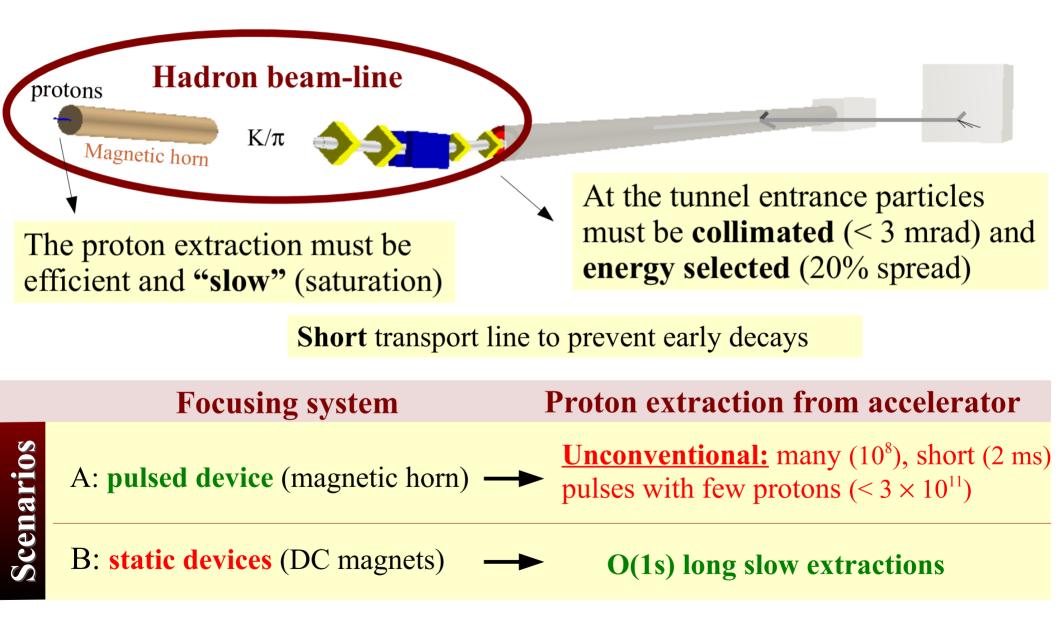
The decay tunnel: a harsh environment


- particle rates: > 200 kHz/cm²
- **backgrounds:** pions from K⁺ decays

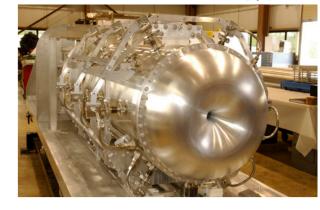
Need to veto 98-99 % of them

Moreover:

- extended source of ~ 50 m
- grazing incidence
- significant spread in the initial direction



The hadron beam-line challenge

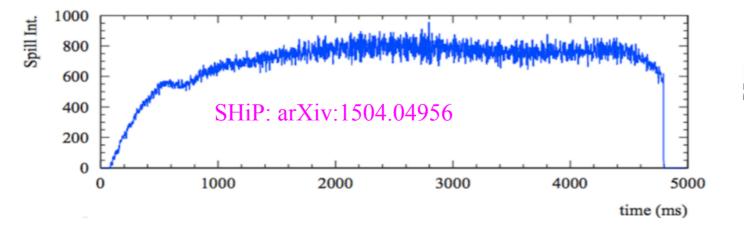


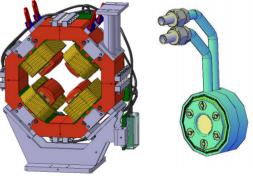
Hadron beam-line: scenario A

- Magnetic horns. Good collection. Pulsed devices.
- $t_{impulse} < 10 \text{ ms}$ (Joule heating, I ~ O(100) kA)
- tagger rate limit: $10^{10} \pi^+$ in 2 ms ~ (collection eff.) **0.3-2.5** × **10**¹² **PoT/spill** depending on E_p

E (GeV)	π^+/PoT	$K^+/{\rm PoT}$	PoT for a $10^{10} \pi^+$	PoT fo	or $10^4 \nu_e$	$_{e}$ CC
	(10^{-3})	(10^{-3})	spill (10^{12})		(10^{20})	
30	4.0	0.39	2.5		5.0	
50	9.0	0.84	1.1		2.4	* J-PARC > 1.5 x 1
60	10.6	0.97	Simple 0.94 Simp	le	2.0	$CNGS = 1.8 \times 10^{2}$
70	12.0	1.10	0.00	$\frac{13}{10} \text{ K}^{+} / \nu^{\text{CC}}$	1.76	NuMI = 1.1×10^2
120	16.6	1.69	0.60		1.16	
450	33.5	3.73	0.30		0.52	

- PoT to get $10^4 v_c^{CC}$: 0.5-5 × 10^{20} OK with present acc. performances!
- Number of spills: ~ 2×10^8 . More challenging:
 - R&D multi-Hz slow resonant extraction (machine studies), horn

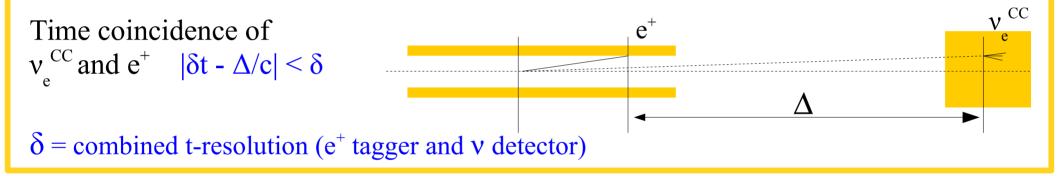

Hadron beam-line: scenario B



- Static focusing: large aperture radiation-hard quadrupoles.
- Disadvantage: loss of acceptance w.r.t. horn-based focusing.
 - PoT to get $10^4 v_e^{CC}$: 0.5-7 × $10^{21} O(\sim 10 \times)$ more but still feasible.

Can be compensated by (data taking x detector mass)

- Far from tagger maximal rates
- **R&D on static focusing beam-line** to maximize the collection efficiency (~ increase "useful" hadrons/PoT).
- the single **resonant slow extraction** over O(s) times is less challenging than the multi-Hz version. Sinergies with the needs of **SHiP** proposal at CERN.



Scenario B: "time tagging" !

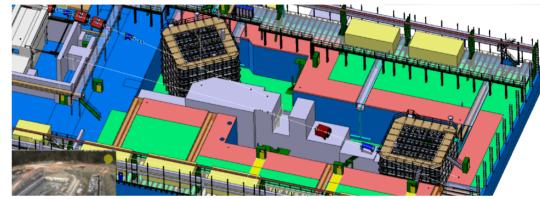
- Event time dilution → **Time-tagging**
- Associating a single neutrino interaction to a tagged e⁺ with a small "accidental coincidence" probability through time coincidences
- E_, and flavor of the neutrino know "a priori" event by event.

Superior purity. Combine E_{v} from decay with the one deduced from the interaction.

Accidental tag probability: $A \sim 2 \times 10^7 \, \delta/T_{extr}$

 $\mathbf{T}_{extr} = \mathbf{1s} \ (\sim 1 \text{ observed } e^+ / 30 \text{ ns}) + \mathbf{\delta} = \mathbf{1} \text{ ns} \rightarrow \mathbf{A} = \mathbf{2} \ \mathbf{\%} \quad \mathbf{OK} \ \mathbf{!}$

N.B. horn focusing (scenario A) is not viable if we are interested in time-tagging. $T_{extr} = 2 \text{ ms} (1 \text{ e}^+ / 70 \text{ ps}) \text{ even } \delta = 50 \text{ ps gives } A = 50\%.$



Beyond cross sections: time tagging

Proving a tagged neutrino beam for cross-sections is ENUBET's primary goal ("**monitored beam**"). Test beam activities based at the **CERN-PS East area**.

In the last phase of the project time synchronization could be tested at the EHN1 CERN neutrino platform:

beam halo μ / cosmic rays

ENUBET tagger prototype

 ↔ LAr (WA105, proto-DUNE w. scint. light) or WCh prototypes

- Tagger-detector sync. << ns
- σ_{t} of the tagger < 1 ns
- σ_{t} of the v detector < 1 ns
- Cosmic background ×10
- small K⁺ momentum bite small (not to spoil the v_{e} energy reco.)

- \rightarrow OK (direct optical links)
- $\rightarrow OK$
- \rightarrow at the limit of present technology
- \rightarrow Foresee overburdens
- \rightarrow can imply flux reduction

For a final experiment

e⁺ tagger design

Conventional beam-pipe replaced by active instrumentation \rightarrow

1) Calorimeter ("shashlik") $\rightarrow \pi^{\pm}$ rejection

• Ultra-Compact Module (UCM)

2) Integrated γ -veto

 $\rightarrow \pi^0$ rejection

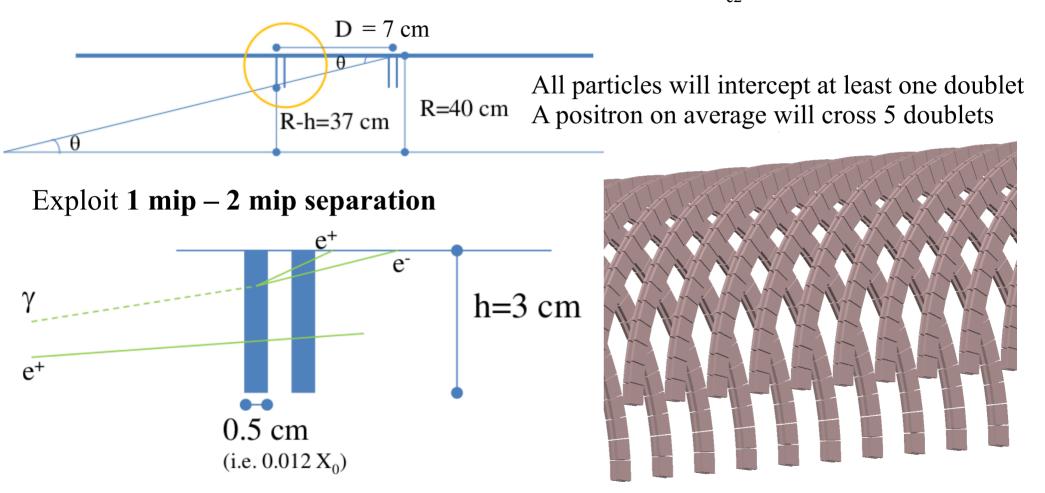
- plastic scintillators or
- large-area fast avalanche photodiodes
- other fast detectors options

ENUBET, A. Longhin

1) compact calorimeter with

longitudinal segmentation

UCM


Detector **R&D** activities

2) integrated γ -veto

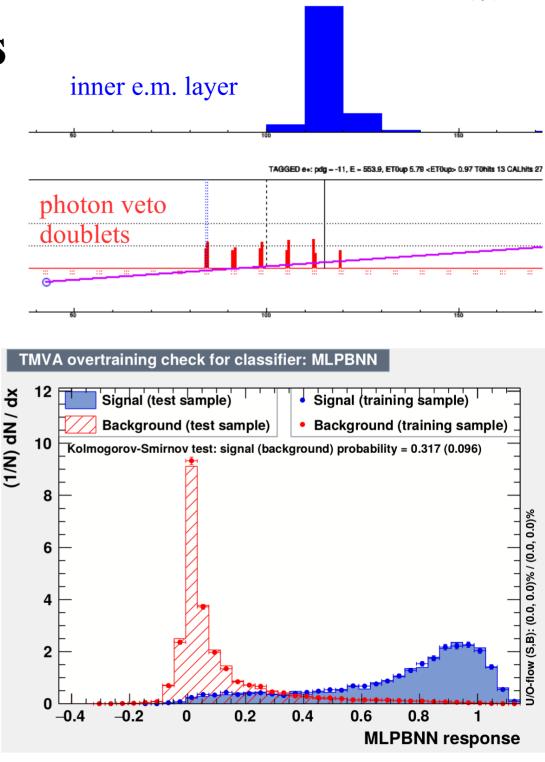
The photon-veto baseline option

Background from γ conversions from π^0 emitted mainly in K_{e^2} decays $(K^+ \rightarrow \pi^+ \pi^0)$

- Possible alternative/attractive solutions under scrutiny allowing a reduced material budget and superior timing.
- Test beams at Frascati: electronics response at high rates and low-E e⁺,1 mip/2 mip

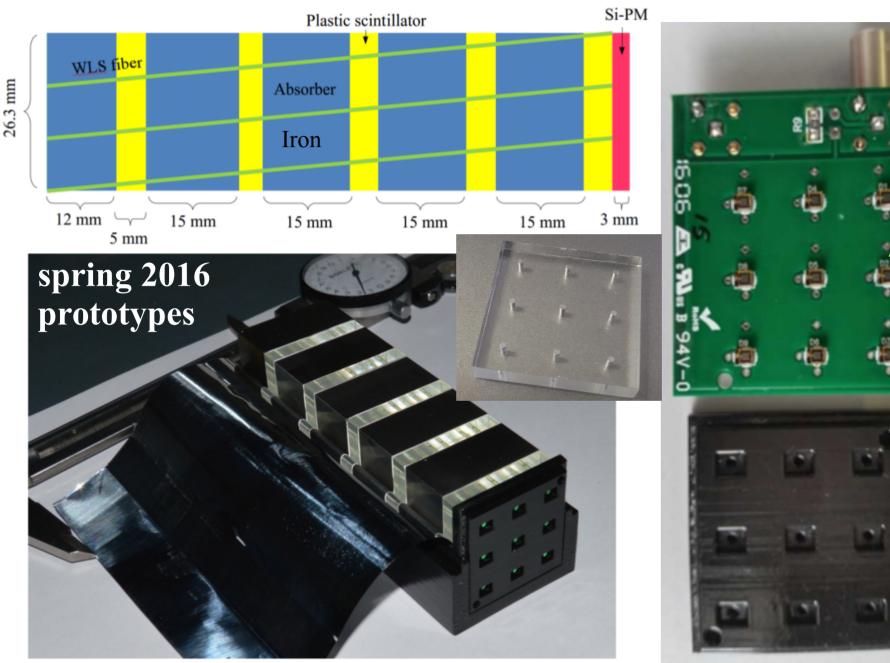
e/π separation studies

GEANT4 simulation. Reject simultaneously π^+ and π^0


Takes into account **pile-up** related restrictions in the event building.

TMVA multivariate analysis:

- E released in calorimeter
- E in photon-veto doublets (3 layers).
- ΔZ between inner e.m. layer peak and the 1st photon-veto doublet.
- N. photon veto doublets upstream of the inner e.m. layer peak


	E _{geom}	E _{sel}
e^+	90.7 %	49.0 %
π^+	85.7 %	2.9 %
$\mathbf{\pi}^{_0}$	95.1 %	1.2 %

Early results confirm previous estimates from parametrizations

The Ultra Compact Module (UCM)

1 Si-PM 1 WLS

Tagger detector R&D: SCENTT Shashlik Calorimeters for Electron Neutrino Tagging and Tracing

A. Berra, C. Jollet, A. Longhin, L. Ludovici, L. Patrizii, M. Prest, A. Meregaglia, G. Sirri, F. Terranova, E. Vallazza

- INFN (CSN5) activity on shashlik calorimetry for neutrino applications started last year (MiB-Insubria, TS, BO, LNF. R.N. F. Terranova)
- First tests at CERN PS-T9 (Aug. 2015) of a shashlik calorimeter with WLS fibers coupled directly to individual SiPMs

	Model	V _{BD}	# of	Cell area	Active	Fill	PDE
		(V)	cells	(μm^2)	Area (mm ²)	factor	
E -	ASD-RGB1C-P	~28	673	40×40	1.13	~60%	32.5%
				SHORT FIBERS			

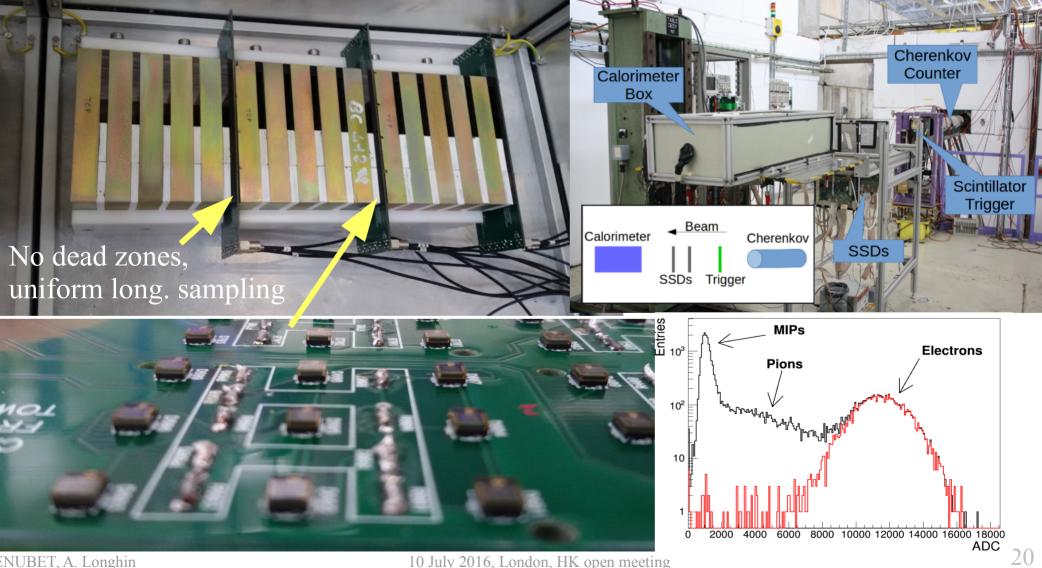
Results recently published in N.I.M. A

Resolution vs E and e/π separation in line with simulation. Done both using TDC or digitizers. No nuclear counter effects.

A compact light readout system for longitudinally segmented shashlik calorimeters http://dx.doi.org/10.1016/j.nima.2016.05.123 ArXiv:1605:09630

A. Berra^{a,b,*}, C. Brizzolari^{a,b}, S. Cecchini^c, F. Cindolo^c, C. Jollet^d,
A. Longhin^e, L. Ludovici^f, G. Mandrioli^c, N. Mauri^c, A. Meregaglia^d,
A. Paoloni^e, L. Pasqualini^{c,g}, L. Patrizii^c, M. Pozzato^c, F. Pupilli^e,
M. Prest^{a,b}, G. Sirri^c, F. Terranova^{b,h}, E. Vallazzaⁱ, L. Votano^e

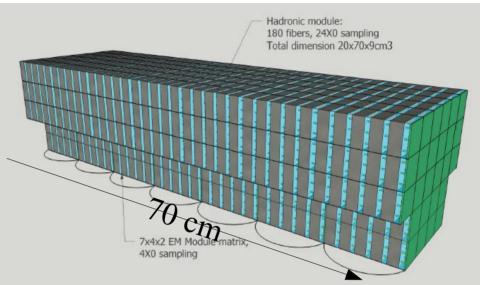
10 July 2016, London, HK open meeting


July 2016 CERN-PS T9 test beam

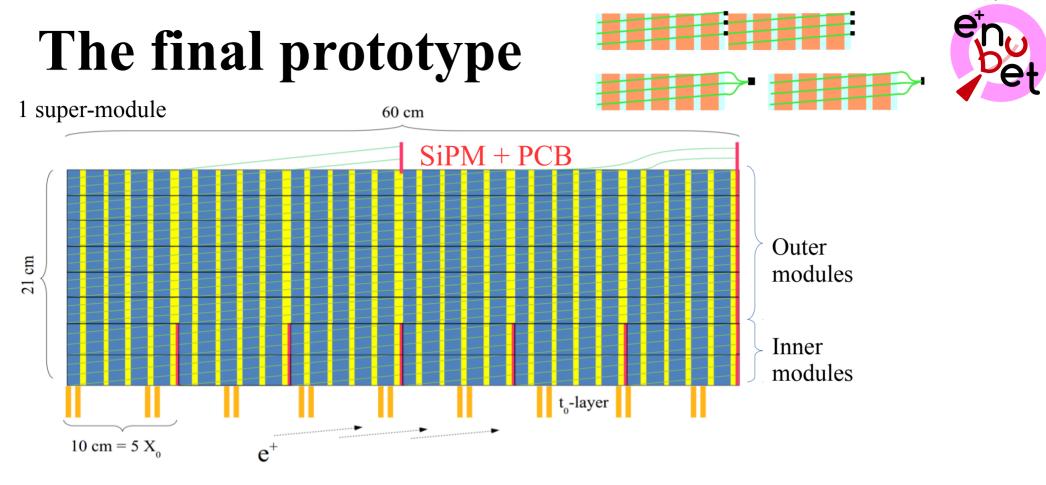
 $29-06 \rightarrow 12/07/2016$

First (successful) tests of 12 ENUBET UCM modules (12 X₀) with pions and

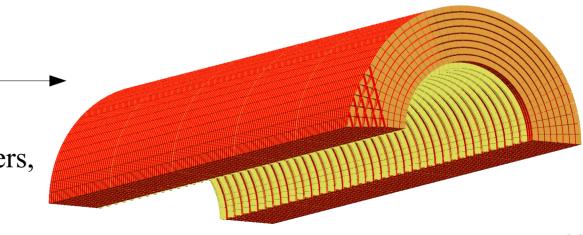
electron beams from 1-5 GeV. HD Si-PM with 20 µm cell size.



Next test beam at CERN-PS T9


Planned for November 2016:

Inner + outer modules → readout w. custom fast digitizers Orientable cradle to study grazing Incidence.



_						_			_								
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	٠	•	•	•	•	•	٠	•	•	٠	•	•	•	•
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•		•			•	•		•			•			
		- 1	•		1												
		- 1	•														
		- 6		<u> </u>	-	-		-	_	<u> </u>	-	_		-			
		- 1	•	•	•	Ξ.	•	•		•	•		•	•			
			•	•	•	•	•	•	•	•	•	•	•	•			
			•									•					

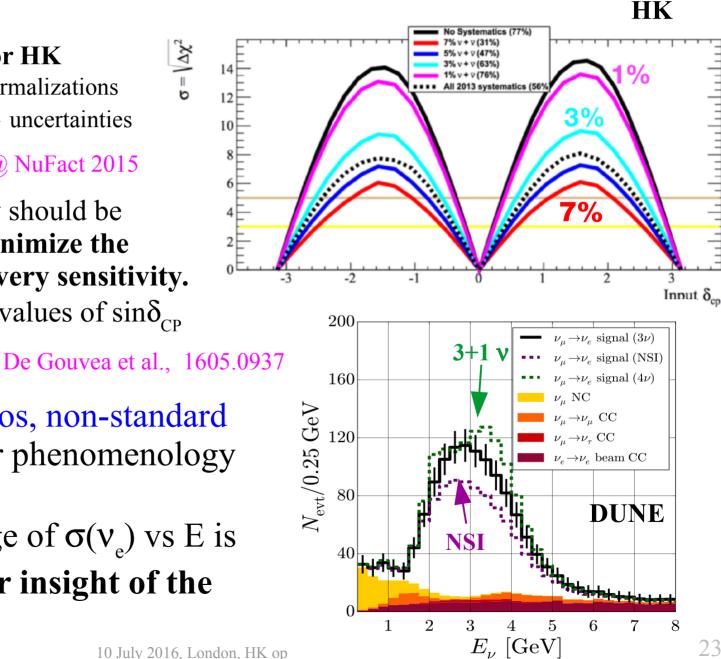
- Dimensions: $3 \text{ m} \times \pi$
- # SiPM: 34000
- Channels: **3800**
- Weight: ~ 5 t
- WLS fiber length: ~10000 m
- Readout: custom waveform digitizers, 2 ns granularity over ~10 ms

• 5 super-modules

Possible sinergies of our programs (I)

 $\sigma = \sqrt{\Delta \chi^2}$

The "natural" one:


Sensitivity study for CPV for HK $\sigma(v_e)$ and $\sigma(v_e)$: uncorrelated normalizations parameters with {0, 1, 3, 5, 7 %} uncertainties

M. Hartz @ NuFact 2015

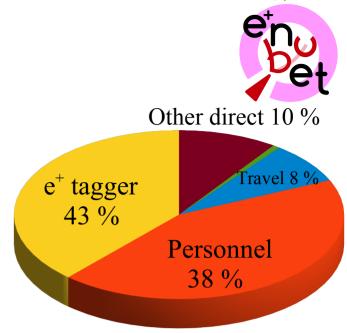
The systematic uncertainty should be controlled to < 1-2% to minimize the impact on the CPV discovery sensitivity. Probe smaller and smaller values of $\sin \delta_{CP}$

Exotic (sterile neutrinos, non-standard interactions): a similar phenomenology

 \rightarrow a precise knowledge of $\sigma(v_{e})$ vs E is needed to get a deeper insight of the underlying physics.

Possible sinergies of our programs (II)

The ENUBET tagger could be coupled with a **WCh detector** (time coincidences tests with prototypes or even eventually for the final experiment).


The ENUBET beam-line study is intended to be **site-independent**. \rightarrow study extraction schemes opportunities at J-PARC (fast rep. rate!) and proton economics.

Large area fast ps detectors for Cherenkov light detection for the photon veto would allow superior timing and improve π rejection at low energies (relevant for Hyper-K) using timing-based vertexing. \rightarrow To be studied!

Large area fast ps detectors also for the neutrino detector (+ static focusing) would open the doors to real time tagging.

Resources, institutions

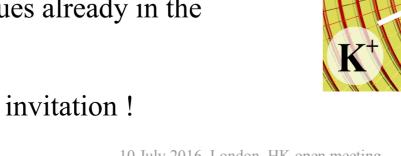
- Project started on 1 June 2016 (5 y duration)
- Kick-off meeting (Padova, 23-24 June 2016): https://agenda.infn.it/conferenceDisplay.py?confId=11574
- 2 MEUR budget

• Team:

expertise in calorimetry, accelerator and v physics.

- INFN Padova, Mi-Bicocca-Insubria, Rome1, LNF, Trieste, Bologna, Bari, Naples.
- CERN-ABT (beam extraction)/STI (targetry, focusing), IN2P3 Strasbourg.
- Interest from **FBK**, Trento (Si-PM R&D).

~ 35 people currently interested to an Expression of Interest planned for submission to CERN-SPSC this autumn. Allow official commitment of CERN collaborators, support for beam test campaigns. Visibility. Possibility for CERN NP.

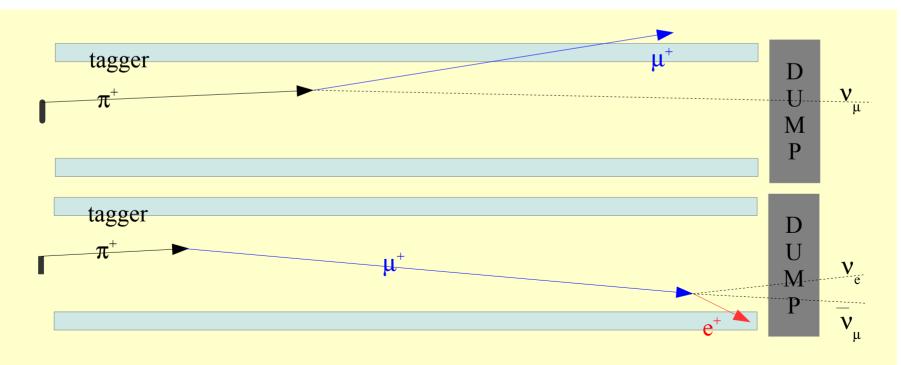

Available upon request for interested colleagues!

Conclusions

Access Tunnel

Diameter 74m

- ENUBET, HK: many potential synergies:
 - **systematics reduction** for precision oscillation physics:
 - CP violation and standard parameters
 - non-standard scenarios (NSI, sterile neutrino searches)
 - R&D for large area ps detectors
 - fast timing in the decay tunnel (background reduction)
 - fast neutrino detectors
 (time tagged neutrino beams)
- Fore more information a draft for an **Expression of Interest for CERN SPSC** is available (longhin@pd.infn.it)
- Some T2K colleagues already in the business
- Thank you for the invitation !


Thank you!

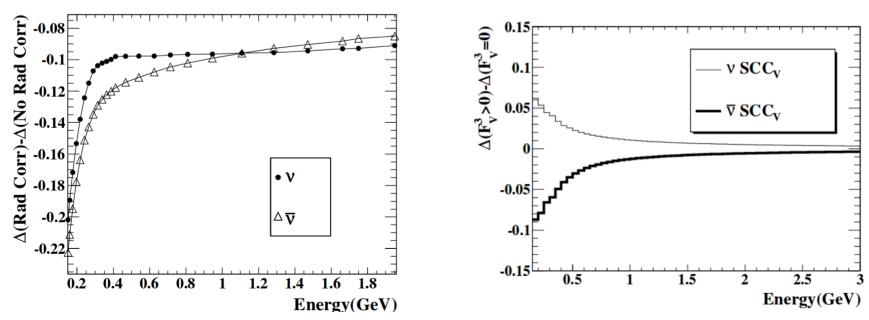
Pion decays induced backgrounds

e⁺n. Det

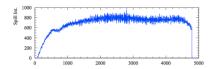
- $\pi^+ \rightarrow \mu^{\pm} \nu_{\mu}$ creates the bulk of ν_{μ} (~ 95% π @ 400 GeV)
 - **v** detector must have good v_e PID: reject NC π^0 in the v_e^{CC} sample
- 2-body decay, $m_{\mu} \sim m_{\pi}$: $\mu^+ \sim 4 \text{ mrad} \rightarrow \text{few in the tagger, easy to reject}$
- μ **D.I.F : suppressed** $L_{\mu} >> L(decay tunnel)$
- 3-body but $m_{\mu} \sim 0.2 \ m_{K} \rightarrow e^{+}_{DIF} \sim 28 \ mrad \ (e^{+}_{Ke3} \sim 88 \ mrad)$

• $\mathbf{v}_{e,}^{\text{CC,DIF}} \sim 3.3\% \rightarrow \sim \text{all } \mathbf{v}_{e}^{\text{are from } \mathbf{K}_{e3}}$ $\frac{\Phi_{\nu_{e}}}{\Phi_{\nu_{\mu}}} = 1.8\% (\nu_{e} \text{ from } K_{e3})$

$\sigma(v_e)$ from $\sigma(v_{\mu})$?


Day, McFarland, Phys.

Rev. D86 (2012) 052003


- 0) $\sigma(v_{\mu})$ is also poorly known due to flux systematics
- 1) Lepton universality in weak interactions is not the full story:
 - Uncertainties from the interplay of
 - radiative corrections
 - nucleon form factors
 - $F_P, F_V^{1,2}, F_A$, second class currents
 - alteration of kinematics due to mass

 \rightarrow Differences between $\sigma(v_{\mu})$ and $\sigma(v_{e})$ (Δ , δ)


- can be significant (10-20%) espec. at low-E
- with different energy trends for v and \overline{v}

10 July 2016, London, HK open meeting

Working packages

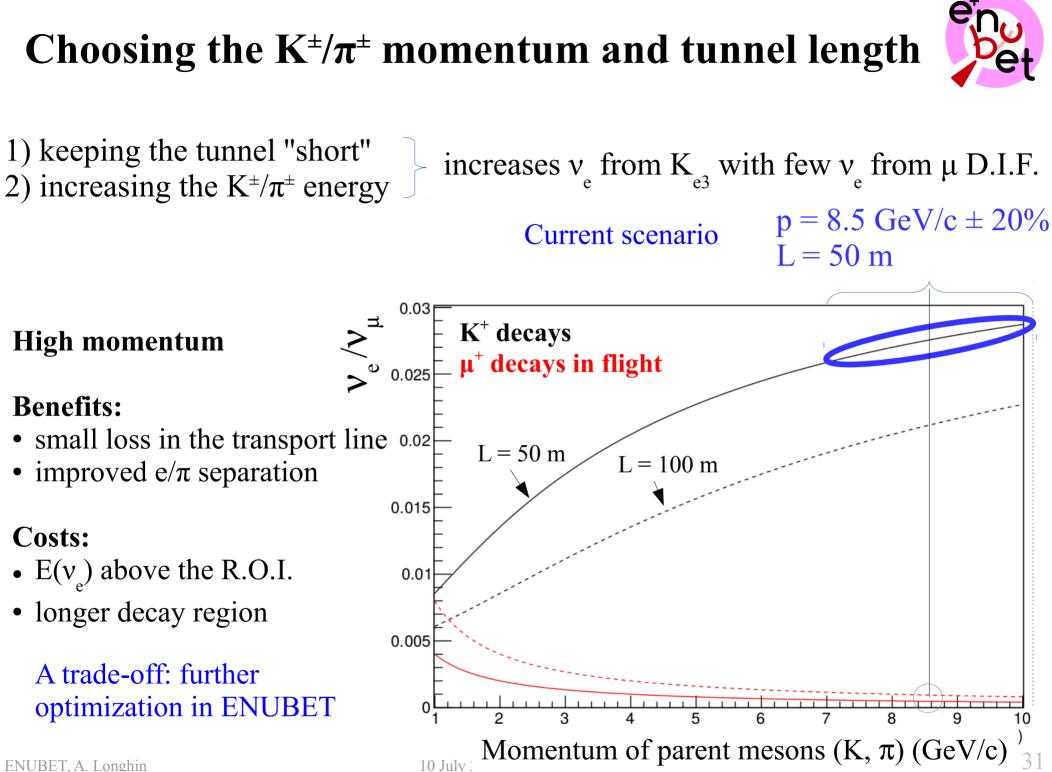
WP1: beam-line

Precise layout of the hadron beam. Study of the injection schemes.

WP2: tagger prototype

Feasibility of tagging under realistic conditions with the desired background and systematics suppression. Radiation hardness.

WP3: electronics and readout

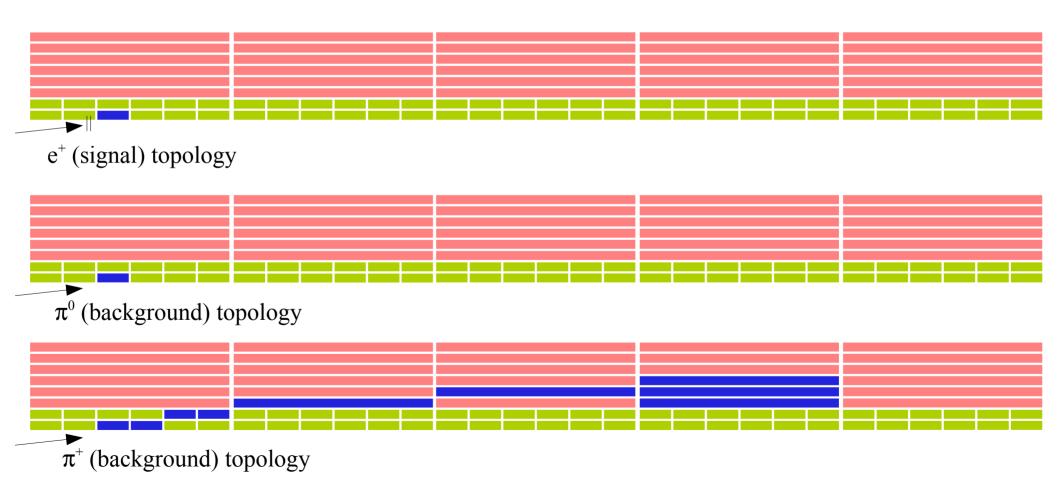

testing the readout performances of the front-end electronics for hornbased (< 10 ms proton extraction) or static (1s proton extraction) focusing systems.

WP4: photon veto and timing system

validating the timing accuracy of the tagger and the photon veto e^+/π^0 separation. Vertex reconstruction inside the tunnel. Pave the way to "tagged neutrino beams" (time synchronization studies with existing LAr or water Cherenkov prototypes).

WP5: systematic

assessment. Overall flux systematics reachable by the exploiting the e^+ rate and the impact on a direct measurement of the $\sigma(v_{e}^{CC})$. Tagger simulation.


e⁺ tagger: background rejection

Key point:

Hadronic modules Electro-magnetic modules Hit modules

- longitudinal sampling
- perfect homogeneity \rightarrow integrated light-readout

