

t The ENUBET project: high precision neutrino flux measurements in conventional neutrino beams

M. Pozzato (INFN – Bologna) on behalf of the ENUBET Collaboration CNNP 2017 - Catania

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

The problem of flux uncertainty

Indirect technique to estimate neutrino flux (current generation cross-sextion experiment):

- Monitoring of protons on target (pot), horn currents, muons after the beam dump
- Hadro-production data
- Full simulation of beamline, secondary reinteractions etc.

BUT STILL...

Neutrino experiments affected by an intrinsic limitation:

large uncertainty of the overall neutrino flux (~7-10%) directly reflecting to the cross section measurements.

In addition to the flux uncertainty for $\sigma(v_e) \rightarrow$ beam contamination. $\sigma(v_{\mu}) \leftrightarrow \sigma(v_e)$ not simple especially @ low-E (Mc. Farland, 2012)

> Poor knowledge of $\sigma(v_e)$ can spoil : the CPV discovery potential the insight on the underlying physics (standard vs exotic)

Monitored neutrino beams

Kaon-based monitored neutrino beams (A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155 are a very appealing candidate since provide a pure and precise source of v_e

Traditional

- •Passive decay region
- $\bullet \, \nu_e$ flux relies on ab-initio simulations of the full chain
- large uncertainties

Monitored

- •Fully instrumented
- ν_e flux prediction = e+ counting (K⁺ \rightarrow e⁺ $\nu_e \pi^0$)
- "By-pass" hadro-production, PoT, beam-line efficiency uncertainties

ENUBET, ERC Project (Consolidator Grant, PI A.Longhin, Host Institution: INFN) aims to **enable the technology of monitored neutrino beams** for the next generation of experiments (technical challenges / physics reach)

Challenges and Requirements

CHALLENGES:	REQUIREMENTS:
The decay tunnel is a harsh environment:	e⁺ tagger key points:
 particle rates: > 200 kHz/cm² 	 longitudinal sampling
 backgrounds: pions from K⁺ decays 	 perfect homogeneity
ightarrow need to veto 98-99 % of them	ightarrow integrated light-readout
 instrument region: ~ 50 m 	
 grazing incidence 	Photon veto key points:
 significant spread in the initial direction 	photon identification capabilities
	 precise timing of the particles
	• Exploit 1 mip – 2 mip separation

Neutrino fluxes in the reference design

The **ENUBET design is optimized** to reach a 1% systematic error on the v_e flux and a <1% statistical error for a 500 ton neutrino detector located ~100 m from the hadron dump.

Proton Energy	Pot for 10 ⁴ v_e CC	Run nominal duration
30 GeV [JPARC]	1.0 10 ²⁰	\sim 3 months at nominal JPARC intensity
120 GeV [Fermilab]	0.24 10 ²⁰	~2 months at nominal NuMI intensity
400 GeV [CERN]	0.11 10 ²⁰	~3 months at nominal CNGS intensity

M. Pozzato - CNNP Catania

PID – Tagger technology

(1) Compact shashlik calorimeter (UCM) with longitudinal (4 X_0) segmentation.

- 3x3x10 cm³ Fe + scint. modules
- SiPM embedded in the bulk of the calorimeter

Separate e⁺, π^+ , μ

(2) Photon Veto Rings of 3 x 3 cm² pads of plastic scintillator

1) Hadronic + e.m. calorimeter prototype

Test Beam @ T9 - CERN 2016

56 (e.m) + 18 (had) UCM modules \rightarrow 666 SiPM (FBK)

Prototypes: resolution and e/π separation

testBeam @ T9 CERN 2017

Setup shashlik calorimeter (1) :

Scintillator: EJ204 scintillator (double thickness) WLS Fiber: BCF92 MC 14 X₀ shashlik calorimeter using plastic Scintillators: new configuration promising a higher light yield and fast response

Goal:

Study calorimeter response (light collection efficiency, linearity response, energy resolution...)

Setup Photon Veto (2):

Scintillator: 3x3x0.5 cm³ EJ200/EJ204 WLS Fiber: Kuraray Y11 MC / BCF92 MC SiPM: SenSL

Goal:

Study light collection efficiency First measure of time resolution First trial of 1 mip / 2mip separation

Photon veto@ CERN-PS T9 2017

1 mip signal is ~ 20 p.e

Testing 1 mip/2mip separation, exploiting a Delrin cylinder on the beam to enhance the π^0 production and an iron γ converter (~ 0.8 X0) for pair produciton

Ongoing activities (1) Irradiation studies

ENUBET works after a transfer line (narrow band beam) and the instrumentation is located only at large angles. BUT still the doses are significant and will drive the final detector choice.

- Neutron and ionizing doses have been studied for a tagger radius of 40, 80 and 100 cm with FLUKA and crosschecked with GEANT4.
- Doses at 1 m radius for $10^4 v_e CC 0.05 kGy$ (ionizing dose) $2 \cdot 10^{11}$ neutrons /cm² (1 MeV equivalent).
- Test irradition with 1-3 MeV neutrons performed at INFN-LNL CN Van de Graaff on 12-27 June 2017.
- \bullet Characterise rad-hard SiPM with 12-15-20 μm cell size (FBK, SensL) up to $10^{11\text{-}12}$ 1 MeV-eq n/cm².
- Test viability of self-calibration with m.i.p.

Ongoing activities (2)

Tests:

- Response of irradiated SiPM (FBK, SenSL)
- Custom digitizers electronics
- photon veto prototypes with plastic scintillators
- recovery time (to cope with pile-up)

Scalable/reproducible technological solutions under study:

- Molded scintillators, water-jet holes machining for absorbers
- Polysiloxane scintillators/powder absorbers

Ongoing acrtivities (3) Simulation of the decay tunnel

Particles are identified by the energy deposit pattern in the calorimeter modules and in the photon veto using a multivariate analysis.

The clustering of energy deposits ("event builder") is based on position and timing of the signal waveforms in the modules. **Pile up is now fully included.**

composition of the reconstructed sample

Pile-up effect on Ke3 efficiency seen at nominal rates. Mitigation enlarging the radius: ~ 25 % (~ 50 % purity).

Ongoing Activities (4) Hadron beamline studies

- A realistic implementation of the beam-line/focusing layout.
- Site-independent. We are considering existing proton driver energies.
- FLUKA/G4Beamline simulations in progress. Support early estimates.
- Assess beam-related backgrounds.
- Machine studies of multi-Hz slow resonant extraction at CERN-SPS

Conclusions

- At GeV scale the limited knowledge on the initial flux is the dominant contribution to cross section uncertainties \rightarrow exploiting the K⁺ $\rightarrow \pi^0 e^+ v_e$ channel (Ke3)
- ENUBET is investigating this approach and its application to a new generation of neutrino experiments.: enabling a technology to directly monitor neutrino production at source → major breakthrough in experimental neutrino physics.
- The **results** obtained in the first year of the project are **very promising**:
 - The Reference Design has been established
 - The detector technology was studied with dedicated prototypes and testbeams, and performance fulfills the expectations
 - The simulation of the decay tunnel is now complete and include particle identification, pile up and assessment of ionizing and non-ionizing doses
 - The work on the beamline simulation and systematics assessment has started