

ENUBET: Enhanced NeUtrino BEams from kaon Tagging

A.Meregaglia (CENBG-Bordeaux)

On behalf of the ENUBET collaboration

30th Rencontres de Blois - Blois - 5th June 2018

Introduction

- Neutrino oscillation physics has moved from discovery to precision era.
- Detectors have grown in terms of size, resolution and complexity, however on the beam side there is no major conceptual breakthrough since the 70's and they are "just" growing in intensity.
- Experiments in the precision era of neutrino physics have exquisite knowledge of the final state interactions but a quite rough (>5%) knowledge of initial fluxes and beam contamination.
- As a consequence, the physics reach of precision physics experiments is strongly linked to the systematic reduction program currently underway.

ENUBET is a development on the beam side for a strong reduction of the systematics related to the flux and cross section knowledge

Electron neutrino source

(DIF)

 (K_{e3})

- The bulk of v_{μ} are produced in a conventional beam by the pion decay: $\pi^+ \rightarrow \mu^+ v_{\mu}$.
- The v_e are given by:

 $\pi^{+} \rightarrow \mu^{+} \nu_{\mu} \rightarrow e^{+} \nu_{e} \overline{\nu_{\mu}} \nu_{\mu}$ K⁺ $\rightarrow \pi^{0} e^{+} \nu_{e}$ mean angular spread of 28 mrad for e⁺ mean angular spread of 88 mrad for e⁺

meson of 8.5 GeV

A large angle positron is a clear indication of the production of a v_e .

How to know the flux?

Conventional Beam

- Passive decay region
- \mathbf{v}_e flux relies on ab-initio simulation of the full chain
- Large uncertainties from hadron production

Monitored Beam

- Fully instrumented decay region
- K⁺ \rightarrow e⁺ $\nu_{e} \pi^{0} \rightarrow$ large angle e⁺
- v_e flux prediction = e^+ counting

The ENUBET approach

The ENUBET approach

Large angle positron monitoring

- The advantage of the ENUBET approach is a pure v_e source from K decay (μ DIF contribution below 3%) and the flux is determined from the e⁺ monitoring at large angle.
- We can obtain tolerable rates / detector irradiation (< 500 kHz/cm2 , < 1 kGy).
- The disadvantage with respect to other proposed techniques such as nuSTORM is a large reduction of flux.

A.Meregaglia (CENBG)

The ENUBET collaboration

 ENUBET is a project approved by the European Research Council (ERC Consolidator Grant, P.I. Andrea Longhin) for a 5 year duration (Jun 2016 – May 2021) with an overall budget of 2 Meuro.

ENUBET collaboration

G. BALLERINI, A. BERRA, R. BOANTA, M. BONESINI, C. BRIZZOLARI,
G. BRUNETTI, M. CALVIANI, S. CARTURAN, M.G. CATANESI, S. CECCHINI,
F. CINDOLO, G. COLLAZUOL, E. CONTI, F. DAL CORSO, G. DE ROSA,
A. GOLA, R. A. INTONTI, C. JOLLET, Y. KUDENKO, M. LAVEDER,
A. LONGHIN, P.F. LOVERRE, L. LUDOVICI, L. MAGALETTI, G. MANDRIOLI,
A. MARGOTTI, V. MASCAGNA, N. MAURI, A. MEREGAGLIA, M. MEZZETTO,
M. NESSI, A. PAOLONI, M. PARI, L. PASQUALINI, G. PATERNOSTER,
L. PATRIZII, C. PIEMONTE, M. POZZATO, F. PUPILLI, M. PREST,
E. RADICIONI, C. RICCIO, A.C. RUGGERI, G. SIRRI, M. SOLDANI, M. TENTI,
M. TORTI, F. TERRANOVA, E. VALLAZZA, M. VESCO, L. VOTANO

Activities

- Beamline design.
- Test beams at CERN-T9 and INFN-LNF.
- Construction of 3m section of the instrumented decay tunnel.
- Design of the proton extraction scheme (CERN SPS).

A.Meregaglia (CENBG)

Beamline (1)

- Claiming an overall systematic budget <1% requires an end-to-end simulation of the neutrino beamline. Such simulation work (currently based on CERN-SPS) is ongoing.
- Two options are currently under investigation: a horn based option and a static focusing one.

SHIP@CERN

Horn

I(t) profile matching the extraction scheme (few ms, ~10 Hz during flat top)

Pros: large acceptance (flux)

Cons: unconventional parameters for p extraction and focusing of secondaries

Static focusing Focusing

TAL

Static (quad, dipoles)

Pros: very low rates at the decay tunnel. Tagged neutrino beams.

Cons: small acceptance (flux). Cosmic ray background at the neutrino detector.

Beamline (2)

- Preliminary studies for optimization of the Horn-based beamline were completed (background studies still ongoing).
- The optimization of the static focusing beamline is in progress however preliminary results are very promising despite the lower yield (detailed studies on the beam contamination is still ongoing).

Neutrino beam

- Reference parameters: 100 m baseline, 500 t detector (e.g. ICARUS@FNAL or Protodune-SP/DP@CERN).
- Rates at the far detector: $O(10^4) v_e$ CC events, $O(10^6) v_{\mu}$ CC events in about 1 year of data taking at CERN SPS (400 GeV protons).
- The neutrino energy is a function of the distance of the neutrino vertex from the beam axis (R). The beam width at fixed R (= neutrino energy resolution at source) is 8-22%.

Detector concept

- Calorimetric techniques offer the cheapest and safest mean to distinguish between positrons and charged pions exploiting the longitudinal development of the shower, and the proposed shashlik calorimeter (Iron/scintillator) coupled to a SiPM readout solves the problem of longitudinal segmentation.
- The chosen ultra compact module (UCM) is a 4 X₀ e.m. module where the light is readout connecting WLS fibers directly to a 1 mm² SiPM in a plastic holder.
- A full module is made of 2 e.m. layers and few (exact number under study) hadronic layers (same structure but read out after 60 cm i.e. 2.6 interaction lengths.
- The photon veto, or "t₀ layer", has to be instrumented in the decay tunnel and it will be used as a trigger and as a veto for gammas from π^0 decays (K+ $\rightarrow \pi^+\pi^0$).

Detector simulation (1)

- The software framework was set up at the CC-IN2P3 in Lyon.
- A full GEANT4 simulation of the instrumented tunnel is now available to study particle identification.

 $e^{+}/\pi^{+}/\mu^{+}$ separation

Shashlik calorimeter made of UCM

h=3 cm 0.5 cm $(i.e. 0.012 X_0)$

CB wit

Fe absorb

A.Meregaglia (CENBG)

Detector simulation (2)

- A preliminary event builder was developed to consider neighboring modules and avoid pile-up.
- The identification algorithms separate positrons from neutral and charged pions combining information from calorimeter modules and y veto.

Prototypes (1)

 Detector prototyping for shashlik calorimeter with longitudinal segmentation is ongoing since 2015 founded by INFN R&D (SCENTT).

Cheap, fast (<10 ns) and radiation hard (ENUBET needs 1.3 kGy: not critical) is the base unit of ENUBET

One SiPM for each fiber in the back of each module. Summed signals (9 SiPM per ADC) to reduce cost

Characterisation of 12 UCMs at CERN PS-T9 (1-5 GeV, e and π , 28 June -13 July 2016)

energy resolution <25%/E^{1/2}

Prototypes (2)

- A test beam was carried out at CERN-PS T9 beamline in Nov 2017 56 UCM arranged in 7 longitudinal block (~30X₀).
- The response to mip, electrons and pions was studied yielding a very good agreement between data and MC [Ballerini et al., JINST 13 (2018) P01028].

Results summary

- Energy resolution 17%/√E(GeV).
- Linearity <3% in 1-5 GeV. From 0 to 200 mrad tilts tested → no significant differences.
- Work to be done on the fiber-to-SiPM mechanical coupling → dominates the non-uniformities (effect corrected equalizing UCM response to mip).
- MC/data already in good agreement, longitudinal profiles of partially contained π reproduced by MC
 @ 10% precision.

Prototypes (3)

e⁺/γ separation studies

Irradiation

- t0 layer scintillator (3x3x0.5 cm³) + WLS Fiber + SiPM Tested @ CERN T9 in July+October.
- Light collection > 95%.
- Time resolution ~400 ps.

neutrons in June 2017.

1 mip/2 mip separation clearly observed.

We are able to discriminate γ from Ke3 e⁺

SiPM were irradiated at LNL-INFN with 1-3 MeV

Characterization of 12,15 and 20 μ m SiPM cells up

20

40

60

Mean

Sigma

100 Signal amplitude (mV)

80

33.68 ± 0.74

15.17 ± 1.15

Detectors are radiation hard (we see mip and electrons)

Irradiated SiPM tested at CERN in October 2017.

•

•

European Research Council

Summary

 In about one year ENUBET moved from a conceptual study to a concrete Reference Design.

Item	baseline option	alternatives	status
Proton extraction	Few ms spills at O(10) Hz during the flat top (2 s)	Single slow extraction	Not tested yet
Focusing	Horn based	Quadrupole based	Optimization ongoing
Transfer line	Quad+dipoles		Full simulation ongoing
Detector for e/π separation	Shashlik calorimeter with SiPM readout	Polysiloxane scint. Non-shashlik readout	Full simulation and prototyping ongoing
Photon veto	Scint. Pads with fiber readout	Direct readout LAPPD	Full simulation and prototyping ongoing
Particle ID and detector optimization	3×3×10 cm ³ UCM	Different radii and granularities	Full simulation and prototyping ongoing
Systematic assessment	Positron monitoring (Ke3 decay)	Enhanced exploting other K decay modes	Just started

Conclusions

- The precise knowledge of neutrino cross section is a key element for future generation neutrino experiments aiming at the CP violation measurement.
- The intrinsic limit on the v cross section (flux uncertainty) can be reduced by one order of magnitude exploiting the K+ $\rightarrow \pi^0 e^+ v_e$ channel (K_{e3}).
- In the next 4 years ENUBET will investigate this approach.
- Results obtained so far are promising:
 - Full simulation of the decay tunnel supports the effectiveness of the calorimetric approach for large angle lepton identification.

First prototypes demonstrate that shashlik calorimeters with longitudinal segmentation can be built without compromising energy resolution (16% at 1 GeV) and provide the performance requested by the ENUBET technology.

ENUBET goal

Demonstrate that a "positron monitored" v_e source based on K_{e3} can be constructed using existing beam technologies and can be implemented at CERN, Fermilab or JPARC.

Demonstrate that a 1% measurement of the absolute v_e cross section can be achieved with detector of moderate mass (500 ton).

Backup

Rates

Rates below 1 MHz/cm².

 Number of protons on target well within reach of present accelerators.

 Interesting energy region of future long baseline experiment is covered (further tuning would allow even lower energies).

Systematics

The positron tagging eliminates the most important source of systematics but can we get to 1%? Very likely...but to be fully demonstrated by ENUBET.

Source of uncertainties	Size	
Statistical error	<1%	
Kaon production yield	Irrelevant (positron tag)	
Number of integrated PoT	Irrelevant (positron tag)	
Geometrical efficiency and fiducial mass	<0.5%	
3-body kinematics and mass	< 0.1%	
v_e contamination from μ DIF	To be checked with low intensity pion runs	
Phase space at entrance	To be checked with low intensity pion runs	
Branching Ratios	Irrelevant (positron tag) except for BG estimation (<0.1%)	
e/π^+ separation	To be checked directly at test beam	

ENUBET implications

- The ENUBET technology is well suited for short baseline experiments where the intensity requirements are less stringent. There are three possible main applications.
- 1. A new generation of cross section experiment with a neutrino source controlled at the <1% level. This is a unique tool for the precision era of neutrino physics and the main goal of ENUBET as founded by the ERC.
- 2. A phase II sterile neutrino search, especially in case of positive signal from the Fermilab SBL program.
- 3. The first step toward a real tagged neutrino beam where the v_e CC interaction at the detector is time-correlated with the observation of the lepton in the decay tunnel.

Impact on v_e cross section measurement based on A. Longhin, F. Terranova and L. Ludovici, Eur.Phys.J. C75 (2015) 4, 155

Background

Source	BR	Misid	$\epsilon_{X \to e^+} (\%)$	Contamination
$\pi^+ \to \mu^+ \nu_\mu$	100 %	$\mu \rightarrow e$ misid.	<0.1	Neglig. (outside acceptance)
$\mu^+ ightarrow e^+ \bar{\nu}_\mu \nu_\mu$	DIF	genuine e^+	<0.1	Neglig. (outside acceptance)
$K^+ \to \mu^+ \nu_\mu$	63.5 %	$\mu \rightarrow e$ misid.	<0.1	Negligible
$K^+ \to \pi^+ \pi^0$	20.7 %	$\pi \to e$ misid.	2.2	13 %
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	5.6 %	$\pi \rightarrow e$ misid.	3.8	5 %
$K^+ o \pi^0 \mu^+ \nu_\mu$	3.3 %	$\mu \rightarrow e$ misid.	<0.1	Negligible
$K^+ \rightarrow \pi^+ \pi^0 \pi^0$	1.7 %	$\pi \rightarrow e$ misid.	0.5	Negligible

Eur.Phys.J. C75 (2015) 4, 155