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CP violation in vacuum
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CPT symmetry
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All three equations can be shown using the formula above.

CP violation “amplitude”:
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CP violation in vacuum
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All three equations can be shown using the formula above.

This is what
we want to measure.

CP violation “amplitude”:
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HyperK and DUNE

Hyper Kamiokande

and Next generation
Super-Kamiokande experiments to measure
CPV via neutrino osc.
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Additionally, huge v, rate will
be used for precision osc.
param. measurement.
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Systematic error in any of the “red”
guantities directly translates in CPV

0.0 02 04 0.6 08 Lo L2 Li L6 measurement systematic.
E (GeV)

Appearance Events (Positive Polarity)

—_
[am]
TT T[T T 1T

Example event rate (ESSnuSB)
E,,  true neutrino energy

_ 6
E*  reconstructed neutrino energy



N, / cm? 0.02 GeV 200 days
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Simple ve Xsec measurement

— v, flux

— v, cross section
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Assuming a perfect detector, there
Is still ambiguity between flux and
Xsec.
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N, / cm? 0.02 GeV 200 days

Simple ve Xsec measurement
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Sssuming a perfect detector, there
 still ambiguity between flux and
sec.
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But we know the flux, don’t we?
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N, / cm? 0.02 GeV 200 days

Simple ve Xsec measurement

Cross-section
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Conventional neutrino beam production
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Conventional neutrino beam (T2K)

J-PARC Super-K
b o
30GeV decay volume Off-axis ND
proton beam vV
7;[ --------------- a2 % = M T —

\\ —~
target&3horns I BSemo -~ = Off-axis angle 2.5 deg.

\ beam dump a " eao... beam axis

muon monitor g " S eeaa.

\ On-axis ND (INGRID)

Difficult to model the meson flux: a very “dirty” QCD process.
Simulations alone have uncertainty ~ 15 %

Dedicated experiments, like NA61/SHINE reduce
systematics of the neutrino beam to ~ 6% 1



N, / cm? 0.02 GeV 200 days

Simple ve Xsec measurement
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Simple ve Xsec measurement
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But we know the flux, don’t we?
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But we can model the cross-section h
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But we know the flux, don’t we?
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Xsec modelling problem

At E, >~ 100 MeV, almost all CC interactions are between the neutrino and a nucleus.

Basic interaction:
Neutrino interacts with a quark

« Easy enough to solve for
invariant amplitude
e Hadronization not trivial

But quarks are bound in a
nucleon.

© D. Dominguez/CERN
Already many problems:
» form factors, esp. axial coupling
* resonances
e guark seas

And nucleons are bound in
nuclei.

World of pain:

nuclear model

final state interactions (FSI)
nucleon clustering (e.g. 2p2h)
coherent piO production

State-of-the-art theoretical xsec models sometimes differ by factor 2 in total xsec.
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Neutrino data anomalies are (mostly) by Strong interaction

Hadron z
physics”

Courtesy of T. Katori



Flux is the main uncertainty for measuring
neutrino xsec.

Can we determine the flux a-prior?
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Original ENUBET Iidea

Instrumentize the decay tunnel to precisely measure the neutrino flux
« In particular, measure v_flux component from charged kaon decays

« Use this to measure v_interaction cross-section for CPV measurement and more

Kt —5m%+et 4+, BR-5%

/K

Proton
absorber

Short, narrow band focusing and transfer
line (8 GeV £ 20%)

acey‘.ﬁ‘n
ey Hadron dump
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ENUBET evolved

* A breakthrough: static focusing system replacing the pulsed horn design
- made possible by the continuous proton extraction mode (~4s spills as opposed
to ~ms spills)
* Monitoring of the 1t -~ vy + L decays by instrumenting the hadron dump
- also due to continuous extraction
- makes it possible get an a-priori estimation of v, energy (NBOA technique)

* NPOG6/ENUBET, ERC

Transfer Line Tagger (decay tunnel)

* normal conducting magnets (1.8 T) * length of 40 m hadron dump

* 6 quadrupoles + 2 dipoles * radiusof 1T m
* bending angle 14.8°
* short to minimize early K decays (26.7 m)

* small beam size
|#=== -*-FF____——-- proton dump
l3m'

non-interacting primary protons 20

7T+—),1L+—|—VM
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Assembled in INFN-Legnaro, charged
beam tested at CERN several times under
NPO6/ENUBET experiment
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A neutrino detector In the monitored beam

hadron dump
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A neutrino detector In the monitored beam
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Say, ProtoDUNE? That is already at CERN? Or maybe WCTE? 23



The narrow-band off-axis technique

Narrow-band off-axis technique
narrow momentum beam O(10%)

|

(Ev, r) are strongly correlated
* Ey =neutrino energy
* r =radial distance of interaction vertex from

beam axis
v, event rate / 1.4 10" pot
< 10 sasessey = .
S 9 A ;:__-.__._:.'
uf
8 Sl s - 10*
precise determination of E, : , i i =~
w/o relying on reconstruction of final NE T 10°
state particles from v, interactions 53!
4-_- 10°

v, interacting at different off-axis angles span different energy ranges., 10

selecting a radial slice, a flux narrower than the total flux can be probed. 1

- . . 0 1
10 radial slices, each spanning a 20 cm window. 0 02 Qe 112 14 16 18 2

r[m]

I
~
o
o

- access to different energy spectra probing many off-axis angles (0 - 4.5°) select v, with given energy 24

Courtesy of F. Bramati with a radial cut




The narrow-band off-axis technique

Narrow-band off-axis technique
narrow momentum beam O(10%)

|

(Ev, r) are strongly correlated

* E, = neutrino energy

* r =radial distance of interaction vertex from
beam axis

narrow band off-axis v, event rate

> - I 1 1 I 1 1 1 ‘ 1 1 1 ‘ 1 1 1 =
8 - vy eventrate  {|l1.9
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o 40000 --- monitored event rate” | |l 1.7
= i HK 1
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- B - ] 1.1
P I = 1l 1
® 20000}
q>) B
v, interacting at different off-axis angles span different energy ranges. |
selecting a radial slice, a flux narrower than the total flux can be probed. .0l
10 radial slices, each spanning a 20 cm window. !
- access to different energy spectra probing many off-axis angles (0 - 4.56)

Courtesy of F. Bramati

off-axis radial position [m]



flux averaged v, CC inclusive cross section measurement

The narrow band off-axis technique can provide an “a priori” measurement
of neutrino energy for v, w/o relying on reconstruction of final-state particles.

narrow band off-axis v, event rate
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flux averaged v, CC inclusive cross section measurement

The narrow band off-axis technique can provide an “a priori” measurement
of neutrino energy for v, w/o relying on reconstruction of final-state particles.
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But, can’t we just use our neutrino
detector to reconstruct energy on

event-by-event
basis?

Kyy-like x 10

projected CC inclusive v,
cross section measurement
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flux averaged v, CC inclusive cross section measurement

The narrow band off-axis technique can provide an “a priori” measurement
of neutrino energy for v, w/o relying on reconstruction of final-state particles.
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Energy reco problem

Water Cherenkov detector LArTPC
W (visible)
016
B _Vi L cos
p (invisible)

Example: v, CC QES interaction

Assume:

1. Basic reaction: vy+ n -y + p (CCQES)
2. Neutron free and at rest

Calculate:

E. from - momentum and cos

Both examples use neutrino interaction model (differential xsec) to measure
energy which is then used to measure total xsec as function of energy.

Most FS charged particles visible.

—. Uncertainty and bias (use model to compensate) Neutral ones problematic: use model
— uncertainty and bias

29



ENUBET is a monitored neutrino
beam: we know the flux a-priori, but
have limited knowledge of nu energy

on event-by-event basis

Can we go further?

30



Tagged neutrino beam

Connect each neutrino interaction with its parent particle and
corresponding parent meson

- kinematically closed system for two-body decay: a-priori knowledge of
the neutrino energy at <1% level

— requires tracking of all primary mesons and secondary leptons

No detector bias/uncertainty on netrino energy: “perfect”
measurement of the (differential) cross-section

- RIrOJlgosed with modern techniques in 2022, R&D from the NP06 and
UTAG Collaboration ( )

NUSCOPE: merge of NUTAG and ENUBET techniques

31


https://link.springer.com/article/10.1140/epjc/s10052-022-10397-8

The nuSCOPE implementation Liquid argon and
We track and reconstruct all mesons o™ water Cherenkov/
before the decay tunnel o gure jori vuon Muor WBLS
y "\'~\—r\,,,\,,,\,,\\% calorimeter - Spectrometer rangdq ' Neutrino detectors
\77\777\”’\"\7\‘-} (tUbe) 7 T8_T9T10 metelt=
0y 9‘0‘0 . =y 516 K* T°
A0 T1T2 5T
* saiiEliSEE Vo .
wsipp Q5Q6 Q7 Tt
= ’“‘é' ¥ e Beam ~ RS
' d
“‘ P Spectrometer «— 40mlong __ ump
wo @ decay tunnel
RS T
ged™  aroet
Instrumented static focusing system | Instrumented decay tunnel Instrumented dump
Proton accelerator- Two quadrupole triplet, four dipoles, Segmented Fe-scint Muon spectrometer
CERN SPS (400 GeV/.c) six silicon trackers for momentum calorimeter for lepton and muon range-meter
measurement and tagging monitoring in the tunnel wall

Carbon target

Event-by-event energy reconstruction from neutrino parent particle kinematics!

32
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in the golden tagged sample, the integration
width is no more driven by the energy
uncertainty (<1% !1) but just by statistics



it illustrates sensitivit

The energy dependence of v, cross section
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Measurements “menu”

1) Energy dependence of the neutrino cross
section » know how to extrapolate from near
to Far detectors in oscillation experiments

2) Smearing of neutrino energy
reconstruction — infer the shape of the
oscillated spectrum in DUNE/HyperKamiokande

~

3) differences in the cross section for ve
and v, — reliably use v.
appearance to probe CP violation

4) Interaction channels that constitute
backgrounds

(e.g. NC-nt® production)

— how to interpret far detector event
Rates in DUNE/HyperKamiokande

5) v-N elastic scattering with tagged v,,
The axial counterpart of e-N elastic scattering

Many other channels not covered because they
are work in progress exclusive channels, non-
standard interactions, dark sector probes, sterile

neutrinos, etc.
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Conclusions

Neutrino xsec is a leading uncertainty of the future leptonic CPV
measuring experiments

— experimental measurements of xsec needed
ENUBET is a monitored neutrino beam

NuSCOPE is a tagged neutrino beam, merge of ENUBET and NuTag
collaborations

- a-priori knowledge of neutrino energy at sub-percent level allows an
unprecedented precision of xsec measurement

Proposal of the new facility at CERN to perform these measurements
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Conclusions

* Neutrino xsec Is a leading uncertainty of the future leptonic CPV
1g experiments

@ @ imental measurements of xsec needed

"Is a monitored neutrino beam
We've been successfully doing
experimental neutrino physics for 70

.| years now, why are xsecs suddenly
= a-prior sych a problem? b-percent level allows an

UNPréCcucincu preuisiurt ur AScu measurciment

‘ge of ENUBET and NuTag

I JIIVAN VI \Jl.

* Proposal of the new facility at CERN to perform these measurements
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Conclusions

* Neutrino xsec Is a leading unce Experiments didn't A
1g experiments have enough . _

@ @ imental measurements o Statistics.

"is a monitored neutrino beam

We've been successfully doing I
. ; ; ge of E

experimental neutrino physics for 70

| years now, why are xsecs suddenly
~ a-priol sych a problem? b-percen

UNPréCcucincu preuisiurt ur AScu rmeasurciment

* Proposal of the new facility at CERN to perform thets \

I JITIVAN VI \Jl
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BACKUP
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Technical readiness of nuSCOPE

Is nuSCOPE “ready for construction”? While most of the facility relies on validated technologies, there are
still areas that require full confirmation. In particular,

Design OK Still room for Decay tunnel OK ENUBET R&D (2016-2022)
improvement in reduction  instrumentation
of non-monitored v Hadron dump in progress  ENUBET+PIMENT R&D (2021-
Components OK Standard and existing (at ongoing)
CERN) components Silicon tracking R&D The technologies are identified
: planes within HL-LHC R&D but not yet
Slow in progress  Depends on final fully validated
extraction implementation ) ) ) ) o
Outer tracking n progress  Technologies are identified
Infrastructure in progress Depends on final planes and muon but design and validation in
implementation spectrometer progress
Neutrino detectors
Liquid argon in progress  Based on ProtoDUNE's technologies with enhanced light detection
(ProtoDUNE Run III)
Water Cherenkov - WBLS OK Based on WCTE’s technology or Water Based Liquid Scintillators (WBLS)

Muon catcher and cosmic ray veto  in progress  Depends on final implementation
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