

ENUBET and SBN@CERN proposal

Budimir Kliček Ruđer Bošković Institute, Zagreb

On behalf of nuSCOPE

PHOENIX 2025 IIT Hyderabad

1

10 July 2025

Budimir Kliček Ruđer Bošković Institute, Zagreb

On behalf of nuSCOPE

PHOENIX 2025 IIT Hyderabad

10 July 2025

CP violation in vacuum

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left(A_{ij}^{\alpha\beta}\right) \sin^{2}\frac{\Delta m_{ij}^{2}L}{4E} \pm 2\sum_{i>j} \operatorname{Im}\left(A_{ij}^{\alpha\beta}\right) \sin\frac{\Delta m_{ij}^{2}L}{4E}$$

CP violation
$$P_{\nu_{\alpha} \to \nu_{\beta}} \neq P_{\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}}$$
T violation
 $P_{\nu_{\alpha} \to \nu_{\beta}} \neq P_{\nu_{\beta} \to \nu_{\alpha}}$ **CPT symmetry**
 $P_{\nu_{\alpha} \to \nu_{\beta}} = P_{\overline{\nu}_{\beta} \to \overline{\nu}_{\alpha}}$

All three equations can be shown using the formula above.

CP violation "amplitude":

$$P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}} = 4 \sum_{i>j} \operatorname{Im}\left(A_{ij}^{\alpha\beta}\right) \sin \frac{\Delta m_{ij}^{2}L}{2E}$$

CP violation in vacuum

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left(A_{ij}^{\alpha\beta}\right) \sin^{2}\frac{\Delta m_{ij}^{2}L}{4E} \pm 2\sum_{i>j} \operatorname{Im}\left(A_{ij}^{\alpha\beta}\right) \sin\frac{\Delta m_{ij}^{2}L}{4E}$$

All three equations can be shown using the formula above.

This is what we want to measure.

CP violation "amplitude":

$$P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}} = 4 \sum_{i > j} \operatorname{Im} \left(A_{ij}^{\alpha\beta} \right) \sin \frac{\Delta m_{ij}^2 L}{2E}$$

HyperK and DUNE

Next generation experiments to measure CPV via neutrino osc.

Both use ν_e appearnace in a ν_μ beam

$$P_{\nu_{\mu} \to \nu_{e}} \neq P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}}$$

Basis of the CPV measurement: v_e **event rate**

Additionally, huge v_{μ} rate will be used for precision osc. param. measurement.

v_e oscillated event rate **Cross-section** Flux

Example event rate (ESSnuSB)

Simple v_e xsec measurement

Simple v_e xsec measurement

Simple v_e xsec measurement

Conventional neutrino beam production

Conventional neutrino beam production

Conventional neutrino beam (T2K)

Difficult to model the meson flux: a very "dirty" QCD process. Simulations alone have uncertainty $\sim 15 \%$

Dedicated experiments, like NA61/SHINE reduce systematics of the neutrino beam to $\sim 6\%$

Simple v_e xsec measurement

Simple v_e xsec measurement

Xsec modelling problem

At $E_{\nu} > 100$ MeV, almost all CC interactions are between the neutrino and a nucleus.

Basic interaction: Neutrino interacts with a quark

• Easy enough to solve for invariant amplitude

Hadronization not trivial

But quarks are bound in a nucleon.

And nucleons are bound in nuclei.

Already many problems: form factors, esp. axial coupling nu resonances

• quark seas

• ..

World of pain:

.

- nuclear model
- final state interactions (FSI)
- nucleon clustering (e.g. 2p2h)
- coherent pi0 production

State-of-the-art theoretical xsec models sometimes differ by factor 2 in total xsec.

Neutrino data anomalies are (mostly) by Strong interaction

Courtesy of T. Katori

Flux is the main uncertainty for measuring neutrino xsec.

Can we determine the flux a-priori?

Original ENUBET idea

Instrumentize the decay tunnel to precisely measure the neutrino flux

- In particular, measure v_{a} flux component from charged kaon decays
- Use this to measure $\nu_{_{\!\!\!\!\!\!\!\!}}$ interaction cross-section for CPV measurement and more

$$K^+ \to \pi^0 + e^+ + \nu_e$$
 BR ~ 5 %

ENUBET evolved

- A breakthrough: static focusing system replacing the pulsed horn design
 - made possible by the continuous proton extraction mode (~4s spills as opposed to ~ms spills)
- Monitoring of the $\pi \to \nu_{\mu}$ + μ decays by instrumenting the hadron dump
 - also due to continuous extraction
 - makes it possible get an a-priori estimation of v_{μ} energy (NBOA technique)
- NP06/ENUBET, ERC

The ENUBET demonstrator

Assembled in INFN-Legnaro, charged beam tested at CERN several times under NP06/ENUBET experiment

A neutrino detector in the monitored beam

A neutrino detector in the monitored beam

Say, ProtoDUNE? That is already at CERN? Or maybe WCTE?

The narrow-band off-axis technique

- selecting a radial slice, a flux narrower than the total flux can be probed.
- **10 radial slices**, each spanning a **20 cm window**.

Courtesy of F. Bramati

access to different energy spectra probing many off-axis angles (0 - 4.5°)

with a radial cut

24

The narrow-band off-axis technique

flux averaged ν_{μ} CC inclusive cross section measurement

flux averaged ν_{μ} CC inclusive cross section measurement

flux averaged ν_{μ} CC inclusive cross section measurement

Energy reco problem

- 1. Basic reaction: v_{μ} + n $\rightarrow \mu^{-}$ + p (CCQES)
- 2. Neutron free and at rest

Calculate:

- E_{ν} from $\mu^{_{\rm T}}$ momentum and $cos\theta$
- \rightarrow Uncertainty and **bias** (use model to compensate)

LArTPC

Most FS charged particles visible. Neutral ones problematic: use model \rightarrow uncertainty and **bias**

Both examples use neutrino interaction model (differential xsec) to measure energy which is then used to measure total xsec as function of energy.

ENUBET is a **monitored** neutrino beam: we know the flux a-priori, but have limited knowledge of nu energy on event-by-event basis

Can we go further?

Tagged neutrino beam

- Connect each neutrino interaction with its parent particle and corresponding parent meson
 - kinematically closed system for two-body decay: a-priori knowledge of the neutrino energy at <1% level
 - requires tracking of all primary mesons and secondary leptons
- No detector bias/uncertainty on netrino energy: "perfect" measurement of the (differential) cross-section
 - proposed with modern techniques in 2022, R&D from the NP06 and NuTAG Collaboration (paper here)
- nuSCOPE: merge of NuTAG and ENUBET techniques

Event-by-event energy reconstruction from neutrino parent particle kinematics!

The energy dependence of ν_{μ} cross section

it illustrates sensitivity to theory models

in the golden tagged sample, the integration width is no more driven by the energy uncertainty (<1% !!) but just by statistics

The energy dependence of ν_{μ} cross section

it illustrates sensitivity to theory models

Measurements "menu"

1) Energy dependence of the neutrino cross section \rightarrow know how to extrapolate from near to far detectors in oscillation experiments

3) differences in the cross section for v_e and $v_{\mu} \rightarrow$ reliably use v_e appearance to probe CP violation

5) v-N elastic scattering with tagged v_{μ} The axial counterpart of e-N elastic scattering 2) Smearing of neutrino energy reconstruction → infer the shape of the oscillated spectrum in DUNE/HyperKamiokande

4) Interaction channels that constitute backgrounds
 (e.g. NC-π⁰ production)
 → how to interpret far detector event Rates in DUNE/HyperKamiokande

Many **other channels** not covered because they are work in progress exclusive channels, nonstandard interactions, dark sector probes, sterile neutrinos, etc.

References

Documents

- ENUBET proposal: https://link.springer.com/article/10.1140/epjc/s10052-015-3378-9
- ENUBET design: https://link.springer.com/article/10.1140/epjc/s10052-023-12116-3
- NuTAG paper: https://link.springer.com/article/10.1140/epjc/s10052-022-10397-8
- nuSCOPE paper: https://arxiv.org/abs/2503.21589

Talks

- https://indico.cern.ch/event/1558536/contributions/6564236/attachments/3085203/5473427/bramati_n uSCOPE_v1.pdf
- https://www.hep.ph.ic.ac.uk/seminars/slides/2025/FTerranova.pdf
- https://indico.in2p3.fr/event/36107/contributions/153939/attachments/93151/142490/nuSCOPE_12Jun e2025_Longhin_v4.pdf

Conclusions

- Neutrino xsec is a leading uncertainty of the future leptonic CPV measuring experiments
 - experimental measurements of xsec needed
- ENUBET is a **monitored** neutrino beam
- nuSCOPE is a tagged neutrino beam, merge of ENUBET and NuTag collaborations
 - a-priori knowledge of neutrino energy at sub-percent level allows an unprecedented precision of xsec measurement
- Proposal of the new facility at CERN to perform these measurements

Conclusions

Neutrino xsec is a leading uncertainty of the future leptonic CPV

ig experiments

a-prior such a problem?

imental measurements of xsec needed

is a **monitored** neutrino beam

We've been successfully doing experimental neutrino physics for 70

years now, why are xsecs suddenly

ge of ENUBET and NuTag

b-percent level allows an Unprecedence precision of Asec measurement

Proposal of the new facility at CERN to perform these measurements

Conclusions

Neutrino xsec is a leading unce Experiments didn't have enough

imental measurements of statistics.

is a monitored neutrino beam

We've been successfully doing experimental neutrino physics for 70 years now, why are xsecs suddenly

- UUIUNUIU
 - a-prior such a problem? b-percen unprecedented precision of Asec measurement
- Proposal of the new facility at CERN to perform the

ge of El

BACKUP

Technical readiness of nuSCOPE

Is nuSCOPE "ready for construction"? While most of the facility relies on validated technologies, there are still areas that require full confirmation. In particular,

Beamline					Diagnostics for lepton monitoring/tagging			
Design	ОК	Still room for improvement in reduct of non-monitored v		ction	Decay tunnel instrumentation	ОК	ENUBET R&D (2016-2022)	
					Hadron dump	in progress	ENUBET+PIMENT R&D (2021-	
Components	OK	Standard and existing (at CERN) components		; (at	Silicon tracking planes	R&D	The technologies are identified within HL-LHC R&D but not yet fully validated	
Slow	in progress	Depen	Depends on final					
extraction		implementation			Outer tracking	in progress	Technologies are identified	
Infrastructure	in progress	Depen impler	ds on final nentation		planes and muon spectrometer		but design and validation in progress	
Neutrino detectors								
Liquid argon			in progress	Based on ProtoDUNE's technologies with enhanced light detection (ProtoDUNE Run III)				
Water Cherenkov - WBLS			ОК	Based on WCTE's technology or Water Based Liquid Scintillators (WBLS)				
Muon catcher and cosmic ray veto			in progress	Deper	ends on final implementation 20			