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CP violation in vacuum

CP violation T violation CPT symmetry

All three equations can be shown using the formula above.

CP violation “amplitude”:



CP violation in vacuum

CP violation T violation CPT symmetry

All three equations can be shown using the formula above.

CP violation “amplitude”:
This is what
we want to measure.
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HyperK and DUNE
Hyper Kamiokande

and Next generation 
experiments to measure 
CPV via neutrino osc.

Both use νe appearnace in 
a νμ beam

Basis of the CPV 
measurement:
νe event rate

Additionally, huge νμ rate will 
be used for precision osc. 
param. measurement.
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νe oscillated event rate

Example event rate (ESSnuSB)

Flux Cross-section

Detector response
What we want

true neutrino energy

reconstructed neutrino energy

Systematic error in any of the “red” 
quantities directly translates in CPV 
measurement systematic.
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Simple νe xsec measurement
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Assuming a perfect detector, there 
is still ambiguity between flux and 
xsec.
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But we know the flux, don’t we?
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Conventional neutrino beam production

Protons

Extra
focusingTarget + horn Decay tunnel Hadron stop / rock 

(diverging)
(“parallel” beam)

2-400 MeV

ESSnuSB – 2.5 GeV kinetic (ESS)
T2K – 30 GeV (J-Parc)
NUMI – 120 GeV (Fermilab)
CNGS – 400 GeV (SPS)

All long baseline beams are νμ beams.



Protons

Extra
focusingTarget + horn

Decay tunnel Hadron stop / rock 

(diverging)
(“parallel” beam)

2-400 MeV

All long baseline beams are νμ beams.

ESSnuSB – 2.5 GeV kinetic (ESS)
T2K – 30 GeV (J-Parc)
NUMI – 120 GeV (Fermilab)
CNGS – 400 GeV (SPS)

Conventional neutrino beam production
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Conventional neutrino beam (T2K)

Difficult to model the meson flux: a very “dirty” QCD process.
Simulations alone have uncertainty ~ 15 % 

Dedicated experiments, like NA61/SHINE reduce 
systematics of the neutrino beam to ~ 6%
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Simple νe xsec measurement

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 / GeVν E

0

2

4

6

8

10

12

14

16

18
310×

 0
.0

2 
G

eV
 2

00
 d

ay
s

2
 / 

cm
ν

N

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 / GeVν E

0

1

2

3

4

5

6

7

  /
 0

.0
2 

G
eV

 2
00

 d
ay

s
in

t
N

 cross sectioneν
 fluxeν

Interactions

Flux Cross-sectionInteraction rate

Assuming a perfect detector, there 
is still ambiguity between flux and 
xsec.

But we know the flux, don’t we?



 14

Simple νe xsec measurement
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Assuming a perfect detector, there 
is still ambiguity between flux and 
xsec.

But we know the flux, don’t we?

But we can model the cross-section
precisely enough?
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Simple νe xsec measurement
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But we know the flux, don’t we?

But we can model the cross-section
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Xsec modelling problem
At Eν >~ 100 MeV, almost all CC interactions are between the neutrino and a nucleus.

Basic interaction:
Neutrino interacts with a quark

● Easy enough to solve for 
invariant amplitude

● Hadronization not trivial

But quarks are bound in a 
nucleon.

© D. Dominguez/CERN

Already many problems:
● form factors, esp. axial coupling
● resonances
● quark seas
● ...

And nucleons are bound in 
nuclei.

World of pain:
● nuclear model
● final state interactions (FSI)
● nucleon clustering (e.g. 2p2h)
● coherent pi0 production
● …..

State-of-the-art theoretical xsec models sometimes differ by factor 2 in total xsec. 
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`

Courtesy of T. Katori
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Flux is the main uncertainty for measuring 
neutrino xsec.

Can we determine the flux a-priori?
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Original ENUBET idea
Instrumentize the decay tunnel to precisely measure the neutrino flux
● In particular, measure ν

e 
flux component from charged kaon decays

● Use this to measure ν
e 
interaction cross-section for CPV measurement and more

BR ~ 5 %
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ENUBET evolved
● A breakthrough: static focusing system replacing the pulsed horn design

– made possible by the continuous proton extraction mode (~4s spills as opposed 
to ~ms spills) 

● Monitoring of the π → νμ + μ decays by instrumenting the hadron dump
– also due to continuous extraction
– makes it possible get an a-priori estimation of νμ energy (NBOA technique)

● NP06/ENUBET, ERC

● normal conducting magnets (1.8 T)
● 6 quadrupoles + 2 dipoles
● bending angle 14.8°
● short to minimize early K decays (26.7 m)
● small beam size

● length of 40 m 
● radius of 1 m

hadron dump

proton dump
non-interacting primary protons

Transfer Line Tagger (decay tunnel)
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The ENUBET demonstrator

Assembled in INFN-Legnaro, charged 
beam tested at CERN several times under 
NP06/ENUBET experiment
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A neutrino detector in the monitored beam

hadron dump

proton dump
non-interacting primary protons
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A neutrino detector in the monitored beam

hadron dump

proton dump
non-interacting primary protons

Say, ProtoDUNE? That is already at CERN? Or maybe WCTE?
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The narrow-band off-axis technique

precise determination of Eν :
w/o relying on reconstruction of final 

state particles from νμ  interactions

select νμ with given energy
with a radial cut 24

• νμ interacting at different off-axis angles span different energy ranges.
• selecting a radial slice, a flux narrower than the total flux can be probed.
• 10 radial slices, each spanning a 20 cm window.

– access to different energy spectra probing many off-axis angles (0 - 4.5°)

Narrow-band off-axis technique 
narrow momentum beam O(10%) 

￬
(Eν, r) are strongly correlated

● Eν   = neutrino energy
● r   = radial distance of interaction vertex from 

beam axis

π+, K+
νμ

μ+

Courtesy of F. Bramati
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25

• νμ interacting at different off-axis angles span different energy ranges.
• selecting a radial slice, a flux narrower than the total flux can be probed.
• 10 radial slices, each spanning a 20 cm window.

– access to different energy spectra probing many off-axis angles (0 - 4.5°)

Narrow-band off-axis technique 
narrow momentum beam O(10%) 

￬
(Eν, r) are strongly correlated
● Eν   = neutrino energy
● r   = radial distance of interaction vertex from 

beam axis

π+, K+
νμ

μ+

Courtesy of F. Bramati
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flux averaged νμ CC inclusive cross section measurement

horizontal error bars encase the flux width (68% percentiles wrt mean energy) 26

π+, K+
νμ

μ+

• The narrow band off-axis technique can provide an “a priori” measurement
of neutrino energy for νμ w/o relying on reconstruction of final-state particles.

projected CC inclusive νμ

cross section measurement
• The πμν- and Kμν-like peaks in the narrow band off-axis

fluxes can be separated using an energy cut at ~ 4 GeV.
• Since πμν and Kμν peaks are well separated, flux averaged

neutrino cross section can be measured using both peaks.
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Courtesy of F. Bramati
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• The narrow band off-axis technique can provide an “a priori” measurement
of neutrino energy for νμ w/o relying on reconstruction of final-state particles.

projected CC inclusive νμ

cross section measurement
• The πμν- and Kμν-like peaks in the narrow band off-axis

fluxes can be separated using an energy cut at ~ 4 GeV.
• Since πμν and Kμν peaks are well separated, flux averaged

neutrino cross section can be measured using both peaks.
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But, can’t we just use our neutrino 
detector to reconstruct energy on 
event-by-event
basis?

Courtesy of F. Bramati
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• The narrow band off-axis technique can provide an “a priori” measurement
of neutrino energy for νμ w/o relying on reconstruction of final-state particles.

projected CC inclusive νμ

cross section measurement
• The πμν- and Kμν-like peaks in the narrow band off-axis

fluxes can be separated using an energy cut at ~ 4 GeV.
• Since πμν and Kμν peaks are well separated, flux averaged

neutrino cross section can be measured using both peaks.
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But, can’t we just use our neutrino 
detector to reconstruct energy on 
event-by-event
basis?

Courtesy of F. Bramati
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Energy reco problem
Water Cherenkov detector LArTPC

Most FS charged particles visible.
Neutral ones problematic: use model
→ uncertainty and bias  

μ- (visible)

νμ

p (invisible)

Example: νμ CC QES interaction 

O16

Assume:
1. Basic reaction: νμ + n →μ- + p (CCQES)
2. Neutron free and at rest
Calculate:
Eν from μ- momentum and cosθ
→ Uncertainty and bias (use model to compensate)

Both examples use neutrino interaction model (differential xsec) to measure 
energy which is then used to measure total xsec as function of energy.
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ENUBET is a monitored neutrino 
beam: we know the flux a-priori, but 
have limited knowledge of nu energy 

on event-by-event basis 

Can we go further?



 31

Tagged neutrino beam
● Connect each neutrino interaction with its parent particle and 

corresponding parent meson
– kinematically closed system for two-body decay: a-priori knowledge of 

the neutrino energy at <1% level
– requires tracking of all primary mesons and secondary leptons

● No detector bias/uncertainty on netrino energy: “perfect” 
measurement of the (differential) cross-section
– proposed with modern techniques in 2022, R&D from the NP06 and 

NuTAG Collaboration (paper here)
● nuSCOPE: merge of NuTAG and ENUBET techniques

https://link.springer.com/article/10.1140/epjc/s10052-022-10397-8
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π+`

Event-by-event energy reconstruction from neutrino parent particle kinematics!

We track and reconstruct all mesons
before the decay tunnel
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 34High tagging/monitoring efficiency.
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Conclusions
● Neutrino xsec is a leading uncertainty of the future leptonic CPV 

measuring experiments
– experimental measurements of xsec needed

● ENUBET is a monitored neutrino beam
● nuSCOPE is a tagged neutrino beam, merge of ENUBET and NuTag 

collaborations
– a-priori knowledge of neutrino energy at sub-percent level allows an 

unprecedented precision of xsec measurement
● Proposal of the new facility at CERN to perform these measurements
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● Neutrino xsec is a leading uncertainty of the future leptonic CPV 
measuring experiments
– experimental measurements of xsec needed

● ENUBET is a monitored neutrino beam
● nuSCOPE is a tagged neutrino beam, merge of ENUBET and NuTag 

collaborations
– a-priori knowledge of neutrino energy at sub-percent level allows an 

unprecedented precision of xsec measurement
● Proposal of the new facility at CERN to perform these measurements

Conclusions

We’ve been successfully doing 
experimental neutrino physics for 70 
years now, why are xsecs suddenly 
such a problem?

Experiments didn’t 
have enough 
statistics.
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