Longitudinally segmented shashlik calorimeters with SiPM readout: the SCENTT experiment

Claudia Brizzolari – 2 November 2016, Strasbourg

Shashlik calorimeters

- low cost
- good energy resolution
- well established technology

The SCENTT-ENUBET project

Shashlik Calorimeters for Electron Neutrino Tagging and Tracing, part of Enhanced NeUtrino BEams from kaon Tagging project -ERC-Consolidator Grant-2015, n° 681647 (PE2)

The SCENTT-ENUBET project

The Detector

Shashlik calorimeter

Compact readout based on SiPM

- Direct fiber-SiPM coupling
- ✓ Readout embedded in the calorimeter bulk → longitudinal segmentation
- Rate capability > 500 kHz/cm²

- Fe + plastic scintillator
- EM + hadronic

Sensitive area 1x1 mm² 2500 20x20 μm^2 cells

- Each SiPM coupled with one WLS fiber
- Custom PCBs

2 November 2016, Strasbourg

Test Beam July @ CERN PS – T9 beamline: prototype

- EM calorimeter
- 30 cm, 3 modules
- 12 basic units
- Fe + SCIONIX EJ-200 or BC412

Test Beam July @ CERN PS – T9 beamline: performed tests

- Mixed beam: electrons, muons, pions
- Energy scan 1 5 GeV
- Different overvoltages to check for SiPM saturation
- Two readouts: charge integrating ADC (V792, CAEN) and digitizer (V1730, CAEN)

Data Acquisition

Waveform Digitizer V1730

Sampled 384 times every 2 ns

For each waveform, smoothed derivative δ_i of the *i*-th wave form is computed

$$\delta_i(N) = \sum_{k=1}^N s_{i+k} - \sum_{k=1}^N s_{i-k}$$

Positive threshold: 200 ADC Negative threshold: -100 ADC

Test Beam July @ CERN PS – T9 beamline: results

Nuclear counter effect (NCE)

Nuclear counter effect studied in August 2015 on another prototype. Red and black lines: run at 5 GeV without WLS fibers Blue line: standard run at 5 GeV

[from: "A compact light readout system for longitudinally segmented shashlik calorimeters", published on Nuclear Instruments and Methods in Physics Research: Section A]

e^{-}/π separation

Conclusions and next plans

- no Nuclear Counter Effect, E resolution = 19% / $E^{\frac{1}{2}} \rightarrow OK!$
- investigate electron efficiency and purity in EM calorimeter

Conclusions and next plans

• testbeam scheduled for November 2016 @ CERN on EM + hadronic calorimeter \rightarrow verify e⁺/ π

2 November 2016, Strasbourg

Comparison between the efficiency (in black) and the purity (in red) obtained varying the energy cut [Alessandro Berra]

Appendix

[Andrea Longhin]

Appendix

Appendix: e^{-}/π separation

Energy deposit at 4 GeV in each layer

Energy deposit at 4 GeV for each particle in the layers. Each layer is given a different weight.

 $Depth = \frac{layer 1 + layer 2 + layer 3 + 3}{layer 1 + layer 2 + layer 3}$

Appendix: SiPMs

- FBK (Fondazione Bruno Kessler)
- SiPM RGB-HD (High Density)
- Sensitive area 1x1 mm²
- 2500 cells 20x20 μm²
- Breakdown: 28 V

Appendix: 33V OV

33V OV deviation at 5 GeV: -3.9%

31V OV deviation at 5GeV = -3.4%