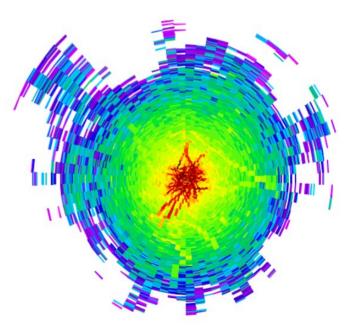
ENUBET updates

<u>A. Longhin</u> Padova Univ. and INFN



This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (G.A. n. 681647).

nuSTORM Collaboration Meeting 8 August 2021

Outline

- ENUBET and monitored meson-based beams (a recap)
- With nuSTORM: common goals, problems, opportunities

Directions for novel neutrino beams

- 1) "clean" sources (~ easy, "textbook" flux prediction)
- unstable nuclei $\rightarrow \beta$ -beams
- stored muons \rightarrow v factories

Pre-2012: use for long baseline experiments Evolution: a short baseline setup for cross section measurements with high precision supporting the long baseline program which will be carried on with high intensity "meson based" HK & DUNE SuperBeams + exotics → nuSTORM

protons
$$\rightarrow$$
 (K⁺, π^+) \rightarrow µ decays $\rightarrow \nu_e / \nu_\mu \rightarrow$ neutrino detector

Directions for novel neutrino beams

2) conventional "meson-based" beam brought to a new standard \rightarrow use a **narrow band beam** and shift the **monitoring at the level of decays** by instrumenting the decay tunnel (tag high-angle leptons)

Again an **ancillary facility** providing **physics input** to the long-baseline program

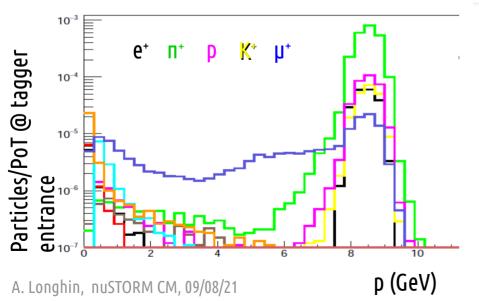
"By-pass" hadro-production, protons on target, beam-line efficiency uncertainties

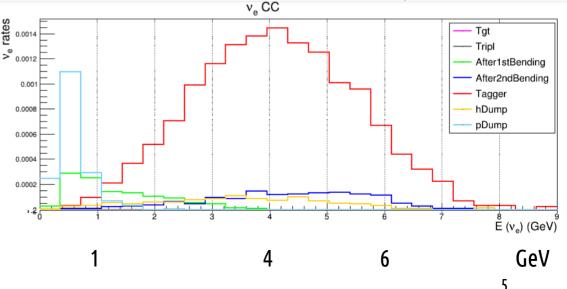
ENUBET / NP06

Enhanced NeUtrino BEams from kaon Tagging ERC-CoG-2015, G.A. 681647, PI A. Longhin, Padova University, INFN CERN Neutrino Platform: NP06

Aims at demonstrating the **feasibility** and **physics performance** of a neutrino beam where **lepton production is monitored at single particle level**

- Instrumented decay region
 K⁺ → e⁺v_e π⁰ → (large angle) e⁺
 K⁺ → μ⁺v_μ π⁰ or → μ⁺v_μ → (large angle) μ⁺
 • v_e and v_e flux prediction from e⁺/μ⁺ rates
- \rightarrow collimated p-selected hadron beam
 - \rightarrow only decay products in the tagger \rightarrow manageable rates
- \rightarrow narrow band beam:
 - E_v -interaction radius correlations \rightarrow
 - "a priori" knowledge of the \mathbf{v}_{μ} spectra
- → "short", 40 m, tunnel (~all v from K, ~1% v from muons)

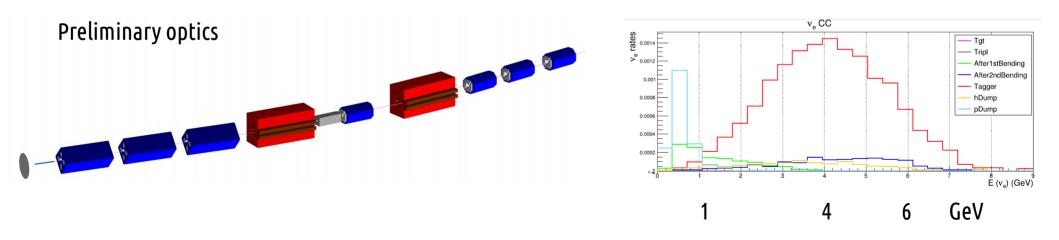

Build/test a demonstrator of the instrumented decay tunnel
 Design/simulate the layout of the hadronic beamline


The ENUBET hadron beamline

- Standard warm magnets. Max aperture 15 cm diameter.
- Momentum bite: 8.5 ± 5% GeV/c at tagger entrance:
 - 4.2 x 10⁻³ π⁺/POT
 - 0.4 x 10⁻³ K⁺/POT

With 4.5×10¹⁹ POT/y \rightarrow 10⁴ v_e^{CC} on 500 t @ 100m from target in ~ 2 y

Keeping beam backgrounds small and under control is the name of the game


V_e^{CC}

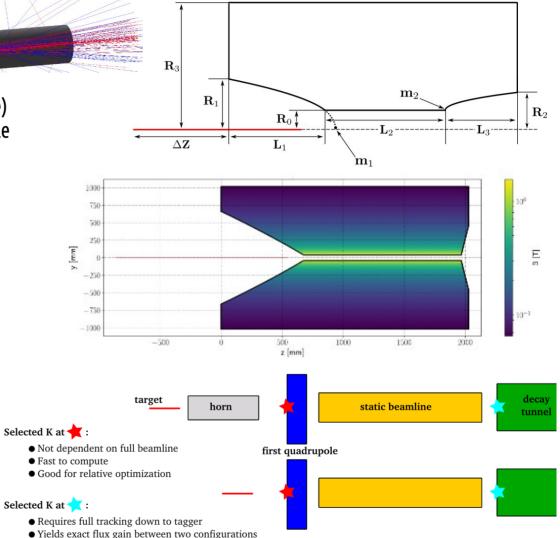
14.8° bending

ENUBET multi-momentum transferline

 A parallel study ongoing for the hadron beamline to add flexibility and allow a set of different neutrino spectra spanning from the "Hyper-K" to DUNE regions of interest. Focus 8.5, 6 or 4 GeV/c secondaries by changing the magnetic fields only.

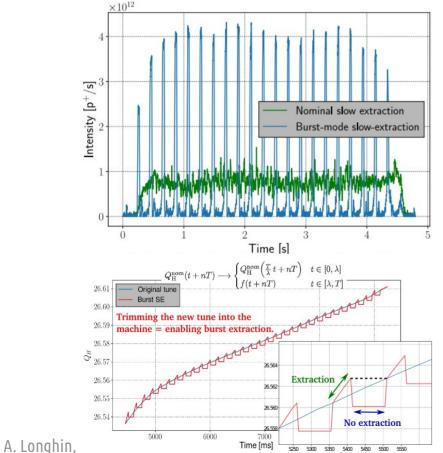
v_e from 8.5 GeV/c secondaries
(current baseline)

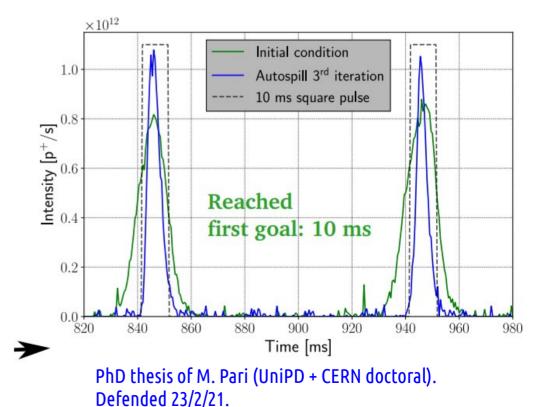
Horn optimization


- New **double-parabolic** geometry (formerly MiniBooNE-like)
- New **genetic algorithm** implemented successfully to sample the large space of parameters.
- FoM is ~ number of collimated K⁺ with p ~8.5 GeV/c
- Convergence in O(100) iterations
- First candidate designs worked out

We were able to reach values of the **standalone FoM** (**★**)

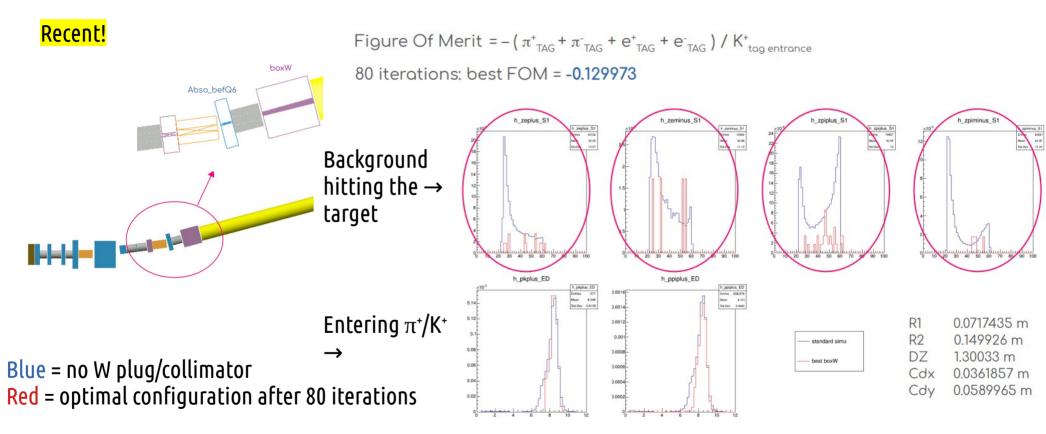
of x 3 higher than the static case. These results confirm an improvement w.r.t. early studies.


When plugged to the existing beamlines the gain factor reduces to only $x 1.5 \rightarrow next step$: dedicated beamline optimization (\star) to profit of the horn-option initial gain \rightarrow larger apertures for initial guads.


Can extend the same systematic optimization tool.

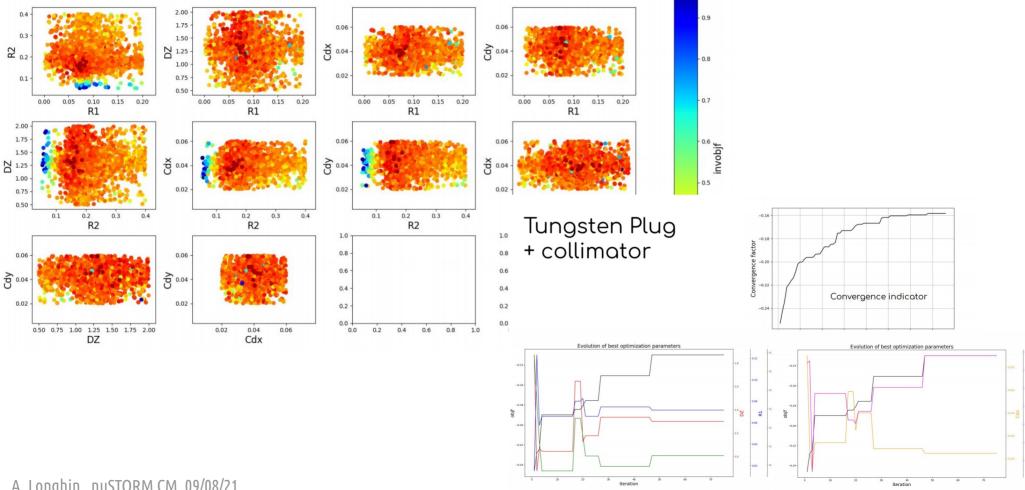
Proton extraction R&D for horn focusing

before LS2: burst mode slow extraction achieved at the SPS. Iterative feedback tuning allowed to reach ~10 ms pulses without introducing losses at septa



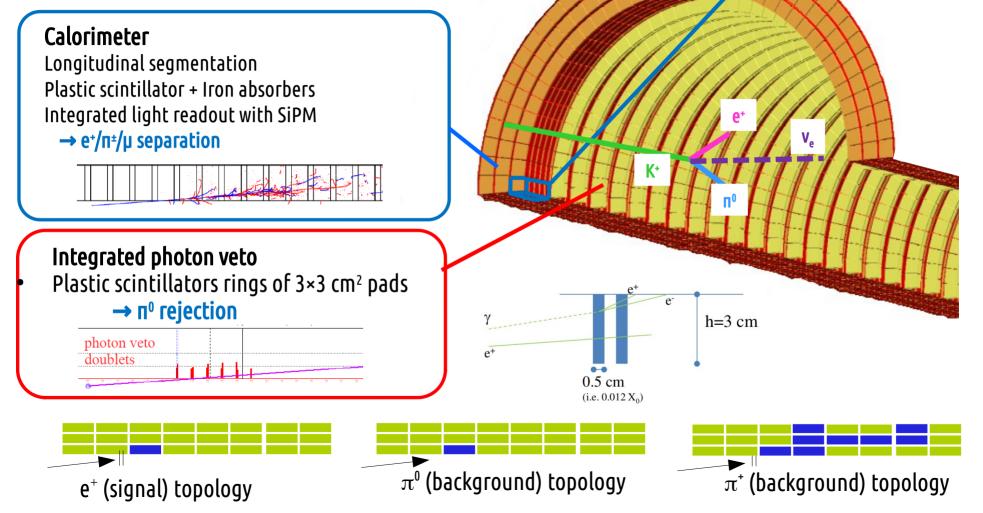
CERN-TE-ABT-BTP, BE-OP-SPS

Velotti, Pari, Kain, Goddard

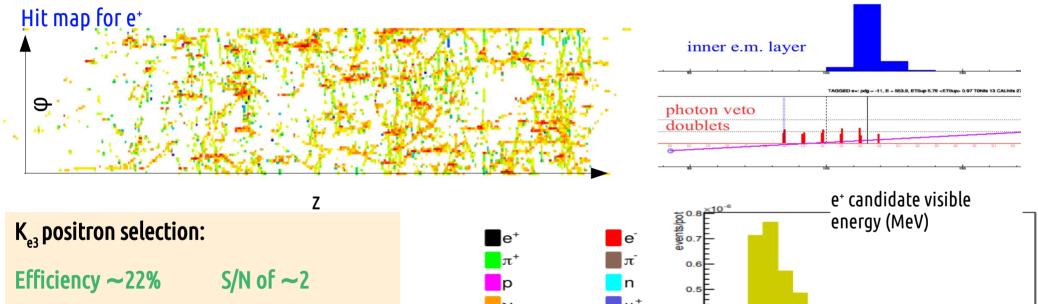

Beamline optimization with genetic algorithm

A high statistics run with this configuration is ongoing

A. Longhin, nuSTORM CM, 09/08/21


Beamline optimization with genetic algorithm

A. Longhin, nuSTORM CM, 09/08/21



Lateral Compact Module 3×3×10 cm³ – 4.3 X₀

ENUBET: v_e constraint from K_{e3} e⁺ reconstruction

The K_{e3} branching ratio is ~5 % and kaons are about 5-10% of the incoming hadron beam. **GEANT4 simulation** of the detector, validated by prototype tests at CERN in 2016-2018. Clustering of cells in space and time. Treat **pile-up** with waveform analysis. Multivariate analysis.

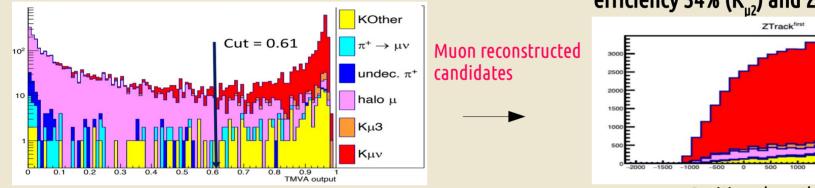
K

K⁺ (other dec.)

0.3

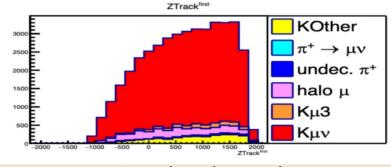
0.2

Visible energy (MeV)

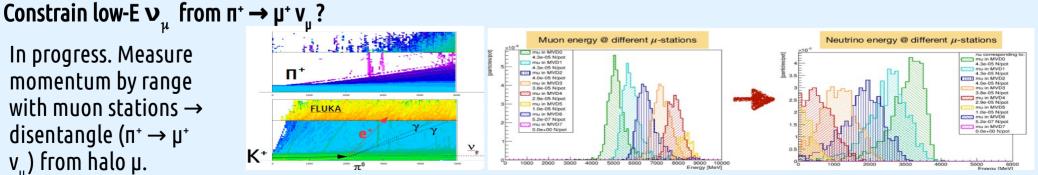

Half of efficiency loss is geometrical

F. Pupilli et al., PoS NEUTEL2017 (2018) 078

ENUBET: v constraints

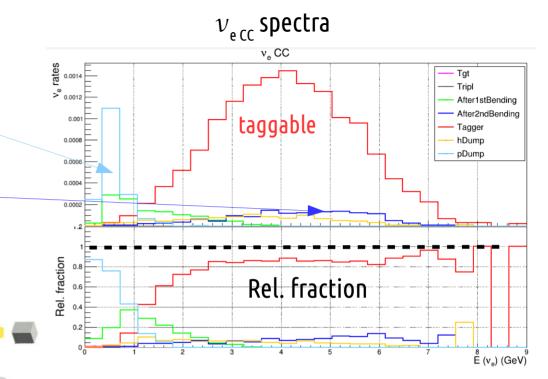

Constrain high-E v_{μ} from (K⁺ $\rightarrow \mu^+ v_{\mu}$ and K⁺ $\rightarrow \pi^0 \mu^+ v_{\mu}$)

The main background from beam halo muons can be effectively selected out and/or used as a control sample.



From pions 80000 ù 70000 8 = 60000 50000 DUNETO 40000 30000 From kaons 20000 10000 9 10 E^{CC} (GeV)

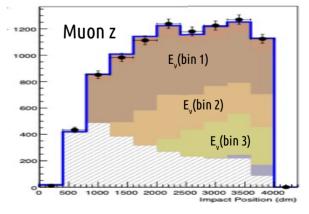
efficiency 34% (K₁₁,) and 21% (K₁₁₃) S/B ~ 6.1


Position along the tunnel

ENUBET: flux constraint

Not directly taggable components: 1) ν_e from K^{0+/-} in the proton/hadron dump \rightarrow reduce by tuning the dump geometry/location

2) ν_{e} from K⁺ in front of the tagger (after 1st bend/2nd bend) ~10% contamination \rightarrow accounted for with simulation (~geometrical).



Uncertainty reduction for the tagged flux component

Constrain the flux model by exploiting correlations between the measured lepton distributions and the flux \rightarrow Fit the model with data and get energy dependent corrections.

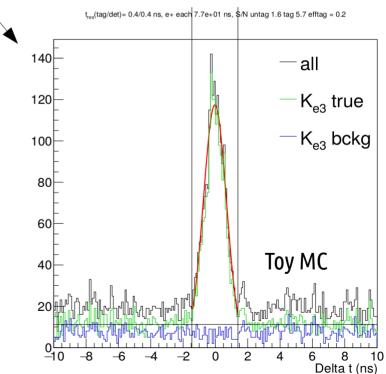
An example:

Each histogram component corresponds to a bin in neutrino energy

Tagged neutrino beams

Profit of advances/affordability of excellent **timing capabilities over large areas** →

 \rightarrow time coincidences of v_e and e⁺


Example with reconstructed e⁺ 2.5×10¹³ pot / 2s with 20% eff. S/N 1.6

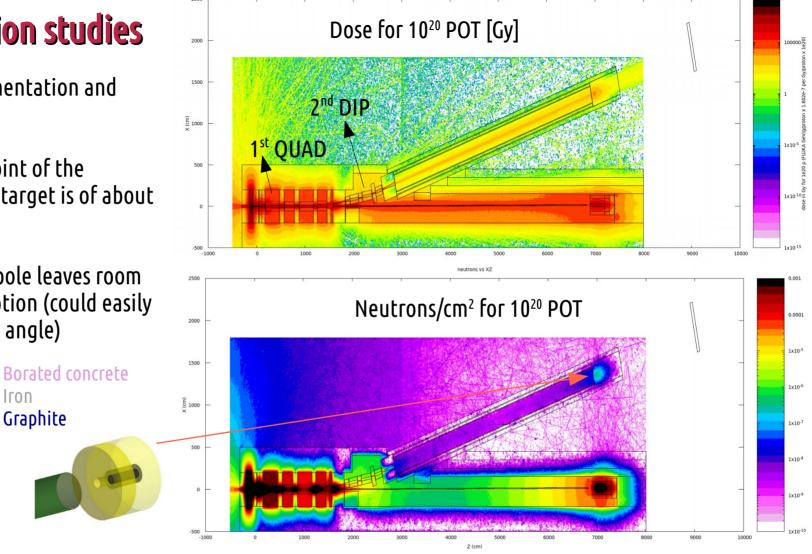
genuine K_{e_3} cand. : \rightarrow **1 every ~ 77 ns** background K_{e_3} cand. ~ 0.6 x \rightarrow 1 cand / ~ 130 ns

Assumed time resolution: 0.4 \oplus 0.4 ns

Flavour and energy determination at **interaction level** are enriched by information at the **decay level**.

Distance corrected Δt between tagged leptons and neutrino interactions

ENUBET: irradiation studies

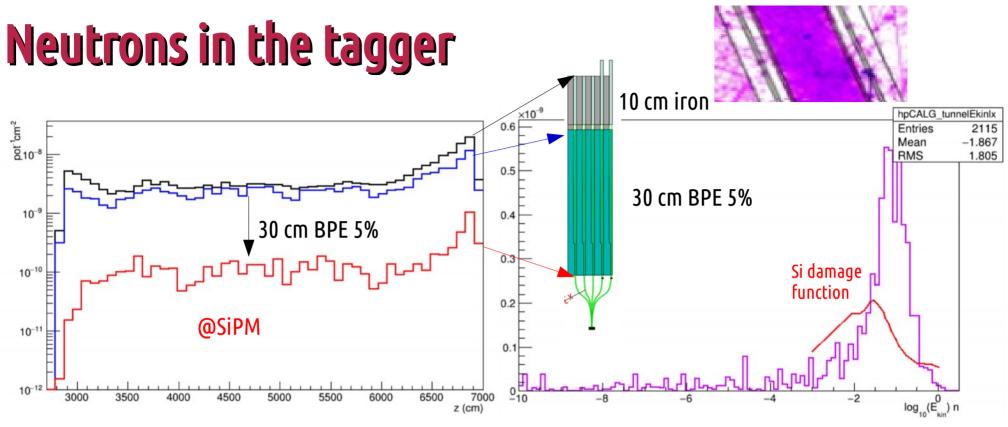

Ensure lifetime of instrumentation and focusing elements.

The dose at the hottest point of the quadrupole closest to the target is of about 100-300 kGy.

The dose at the second dipole leaves room for thinking about a SC option (could easily double/triple the bending angle)

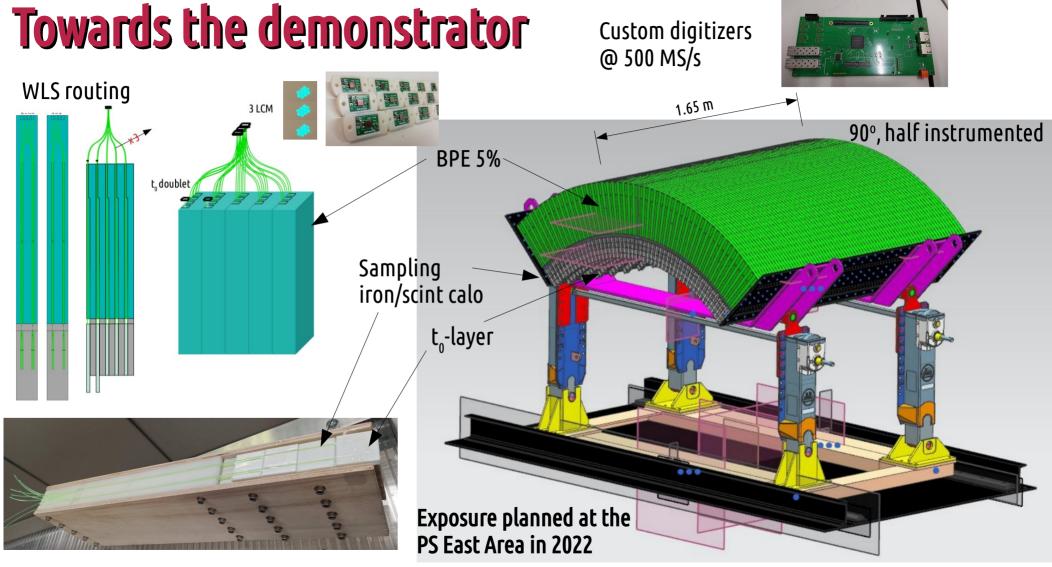
Iron

Graphite



DOSE VE Y

A. Longhin, nuSTORM CM, 09/08/21


2m

tagge

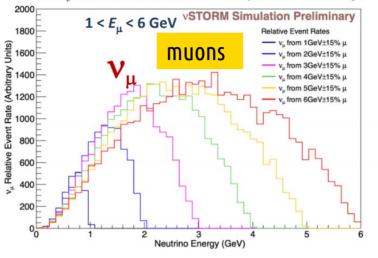
BPE shielding has a **reduction effect** ~ x 20 W.r.t. to the single dipole beamline 7 x 10⁻¹¹ n/POT/cm² ~ 10 x reduction (7 x 10⁹ n/cm² for 10²⁰ POT)

E_{kin} of surviving neutrons is O(10-100) MeV

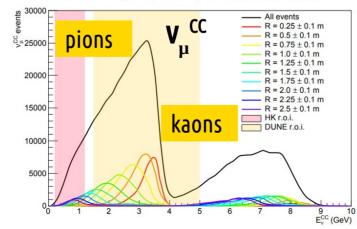
A. Longhin, nuSTORM CM, 09/08/21

Fluxes decomposition

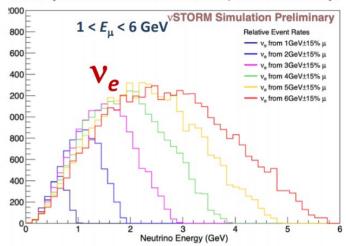
nuSTORM: vary the channeled muon energy from 1 to 6 GeV/c

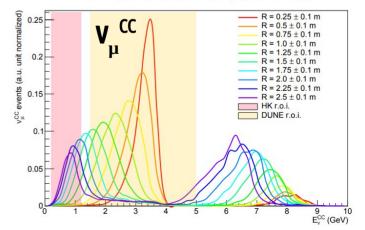

ENUBET narrow-band off-axis technique:

Bins in the radial distance from the center of the beam → singleout well separated neutrino energy spectra → strong prior for energy unfolding, independent from the reconstruction of interaction products in the neutrino detector. "Easy" rec. variable.

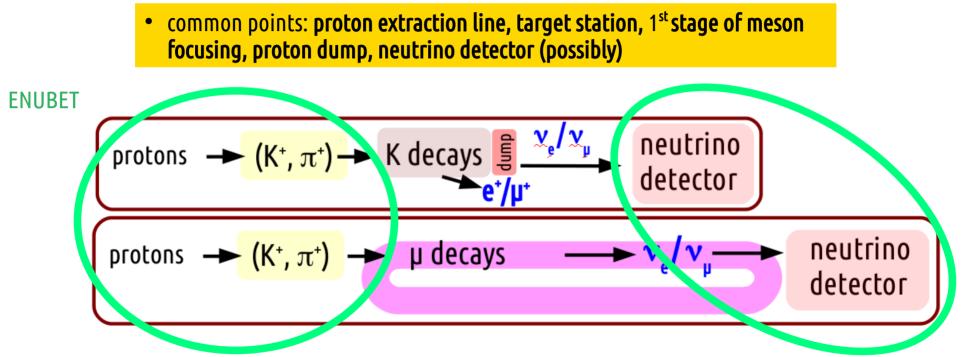

A kind of "off-axis" but without having to move the detector (thanks to the low distance of the detector) !

A. Longhin, nuSTORM CM, 09/08/21


vSTORM: v_u Relative Event Rates at a 5m×5m Plane, 50m Beyond End of Production Straight


ENUBET @ SPS, 400 GeV, 4.5e19 pot, 500 ton detector

vSTORM: ve Relative Event Rates at a 5m×5m Plane, 50m Beyond End of Production Straight



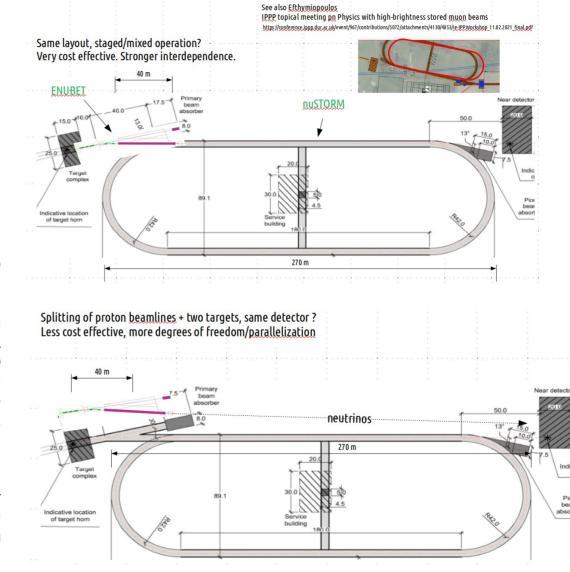
ENUBET @ SPS, 400 GeV, 4.5e19 pot, 500 ton detector

Opportunities

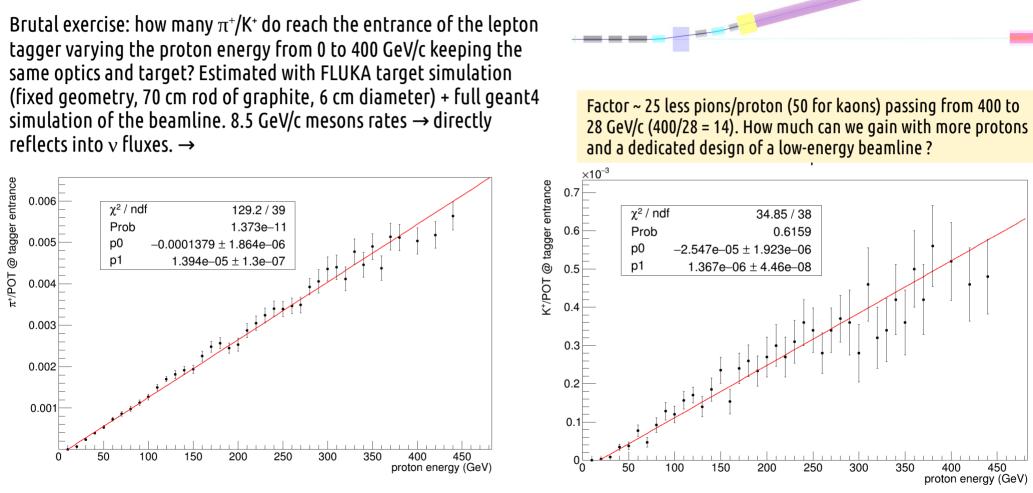
The first stage of nuSTORM can be seen (simplistically) as an "ENUBET without a hadron dump" where pions and muons are channeled into a ring. Large room for smart ideas to match the requirements of the two experiments.

Similar goals (high precision neutrino fluxes) \rightarrow strengthen the physics case, involve the larger community. Common points in the technique \rightarrow natural/mandatory to look into possible common infrastructures to reduce the costs. Sharing even only civil engineering would hugely benefit both projects. Not straightforward though (devil in the details) \rightarrow joint work, sharing of results, experience, tools.

nuSTORM & ENUBET


	Proton extraction/focusing (nominal energy)	Target, sec. transfer line, p-dump	Neutrino detector	Decay region	Hadron dump
ENUBET	Slow extraction (+ quad tripl) "slow" in bursts (+horn) 400 GeV	similar	Similar but at ~100 m (some flexibility)	~40 m. Instrumented.	Yes. Dumps μ in addition \rightarrow preventing a (small) v _e pollution to K _{e3} - v _e
nuSTORM	Fast extraction (+horn) 100 GeV	similar	Similar but at > 300 m from target (ring straight section)	Replaced by straight section of the ring (180 m).	No. μ kept: the most interesting flux parents.

Brainstorming inputs


Option1 ("serial"): ENUBET is smaller, less challenging from the point of view of accelerator physics (key is really background reduction keeping a large statistical sample) \rightarrow it could be sensible to think about using the same target+meson transfer line, feed the beam into an instrumented decay tunnel and in a second phase into the straight line of the muon storage ring. Key study: how similar is the desired phase space of mesons at the level of the tagger entrance / storage ring? Is it possible to design a transfer line being flexible enough to feed a very well collimated 8.5 GeV meson beam to an instrumented decay tunnel or a wider beam to match the storage ring acceptance? (ENUBET beam is about 5 cm in diameter and has a maximal divergence of ~ 1/40).

Option 2 ("parallel"): independent secondary beamlines fed by a proton beam splitter. Parallel operation, more independence. Still would allow to optimize the target station costs. How compatible are our proton extraction schemes? How flexible are we in respect to using the same proton energy? Which one should it be ? With ENUBET we have shown that at the 400 GeV SPS we could get 10000 neCC in ~2 years with a 500 t detector at 100 m from the target. Large reduction in vields at the PS should be compensated by a lot more protons (\rightarrow)

Neutrino detector \rightarrow an optimal design could be perfectly good for both projects. The most significant difference is in the position (close for ENUBET, after the straight section for nuSTORM). Conceive a detector that could be "easily" replaced? Double detector?

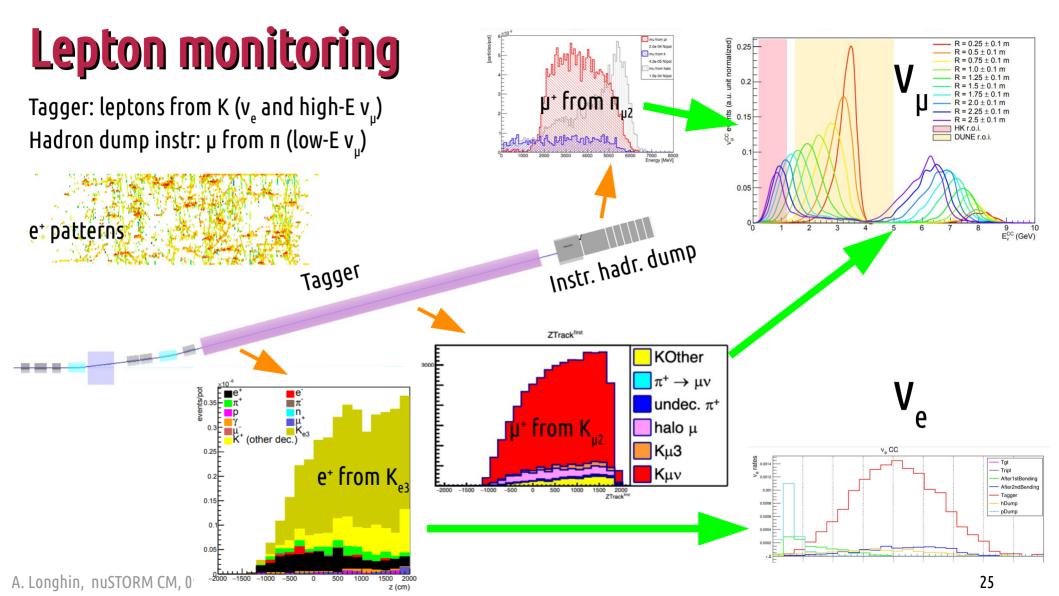
Pior bear

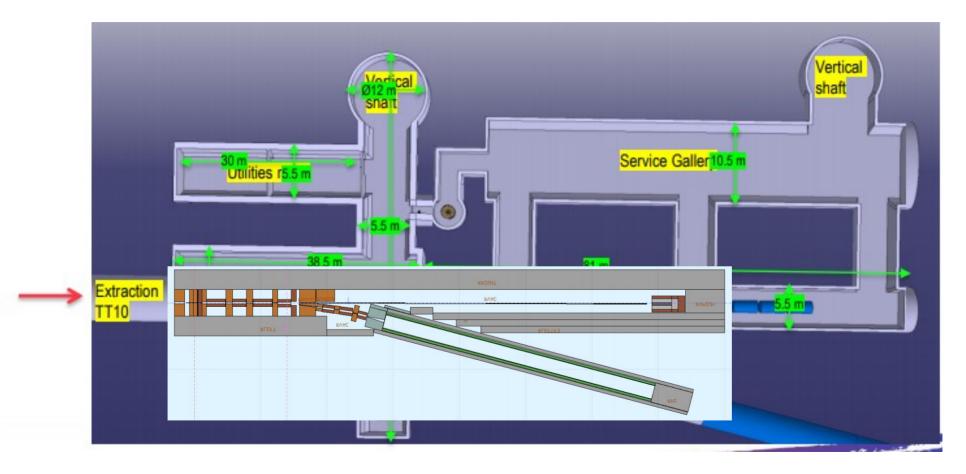
"Flexibility" with proton energy

A. Longhin, nuSTORM CM, 09/08/21

"TLR5" transferline

²³




nuSTORM: offers an **unprecedented statistics of well controlled v**_e and a major leap toward **Neutrino Factories** and the **muon collider**.

ENUBET: a **narrow band neutrino beam at the GeV** scale to measure at O(1%) the flux, flavor and (at 10%) the energy using **lepton-neutrino correlations**.

Let's try to work together to confirm/disprove(?) possible common opportunities in a quantitative and convincing way! \rightarrow joint session at nuFact perfect occasion for visibility and to trigger the process.

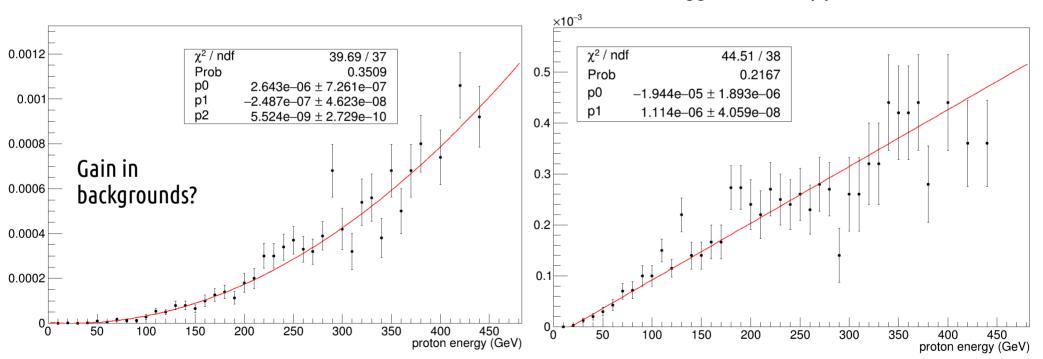
ENUBET at CERN-PS?

Power needed to compensate

Instantaneous power:

```
power[MW] = 1.6e-16 [pot/s] x E[GeV]
```

Assuming 2.25e13 pot/s


@400 GeV → 1.44 MW @28 GeV → 100 kW

To compensate a factor 50 \rightarrow 5 MW beam at 28 GeV

80 kW @ 28 GeV = **1.8e13 pot/s** 80 kW = 8e4 J/s 28 GeV = 2.8e10 eV = 2.8e10 x 1.6e-19 J = 4.48e-9 J Power = 4.48e-9 J x pot/s pot/s = (8e4 J/s) /(4.48e-9 J) = **1.8e13 pot/s**

e⁺, mu⁺ yields per proton

e⁺ at tagger entrance / pot

mu⁺ at tagger entrance / pot

K+, pi+ yields per proton (0-100 GeV/c)

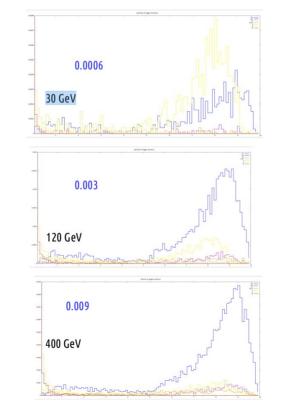
effect visible. 0.2^{×10⁻³} K*/POT @ tagger entrance **Breaks** linear 0.0014 0.18 χ^2 / ndf 129.2 / 39 χ^2 / ndf 34.85 / 38 scaling. Prob 1.373e-11 0.6159 Prob 0.0012 0.16 p0 -0.0001379 ± 1.864e-06 p0 -2.547e-05 ± 1.923e-06 1.394e-05 ± 1.3e-07 p1 0.14 1.367e-06 ± 4.46e-08 p1 0.001 0.12 0.0008 0.1 0.0006 0.08 0.06 0.0004 0.04 0.0002 0.02 0 0, 20 40 60 80 100 20 40 60 80 100 proton energy (GeV) proton energy (GeV) Per proton we have a factor @28 GeV @400 GeV → ~ 25 less pions and 50 less kaons ~ 50e-4 passing from 400 to 28 GeV/c ~ 2e-4 pi+/pot (400/28 = 14)A. Longhin, nuSTORM CM, 09/08/23 ~ 50e-5 K+/pot 29

Red line is a

global linear fit

Some threshold

Older results


 π^+

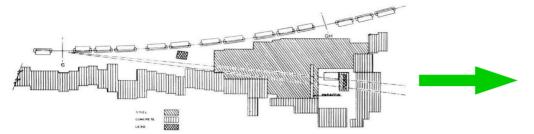
particles at tagger entrance

5 cm W electron filter

(10⁵ pot, half for 400 GeV)

Old beamline 1 dipole (x14 less pions)

Static TL with 2 Dipoles - Numbers

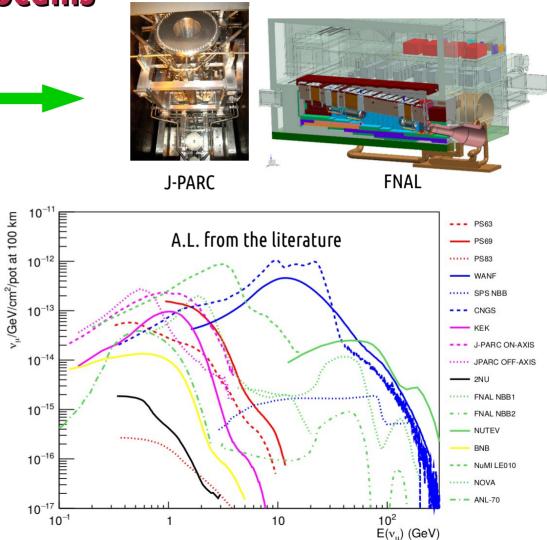

 Protons on Target: 450, 400, 120, 30 GeV, G4beamline run with Fluka Target File with ONLY π/K, Configuration: Triplet + Bending + Quad → Tunnel

	π+				K+				
Configuration Reference Design [EPJ C75 (2015) 155]	@ Tunnel Entrance (6.5 – 10.5 GeV) [10-3] /POT		Factor w.r.t. ENUBET Reference Design [EPJ C75 (2015) 155]		@ Tunnel Entrance (6.5 - 10.5 GeV) [10-3]/POT		Factor w.r.t. ENUBET Reference Design [EPJ C75 (2015) 155]		
			HORN	STATIC			HORN	STATIC	
HORN	450	33.5			450	3.73			
εxx' & εyy' = 0.15 85% eff	120	16.6			120	1.69			
20% mom bite	30	4.0			30	0.39			
STATIC	450	3.65			450	0.43			
80µSr	120	1.25			120	0.16			
20% mom bite	30	0.24			30	0.027			
POT En (GeV)		in/out Tunnel				in/out Tunnel			
450	29.9	90.5%	1.1 (-)	8.2 (+)	2.3	52.1%	1.6 (-)	5.3 (+)	
400	28.6	90.2%	1.2 (-)	7.8 (+)	1.9	51.1%	2.0 (-)	4.4 (+)	
120	10.8	90.5%	1.5 (-)	8.6 (+)	0.8	48.7%	2.1 (-)	5.0 (+)	
30	1.9	89.1%	2.1 (-)	7.9 (+)	0.13	43.6%	3.0 (-)	4.8 (-)	

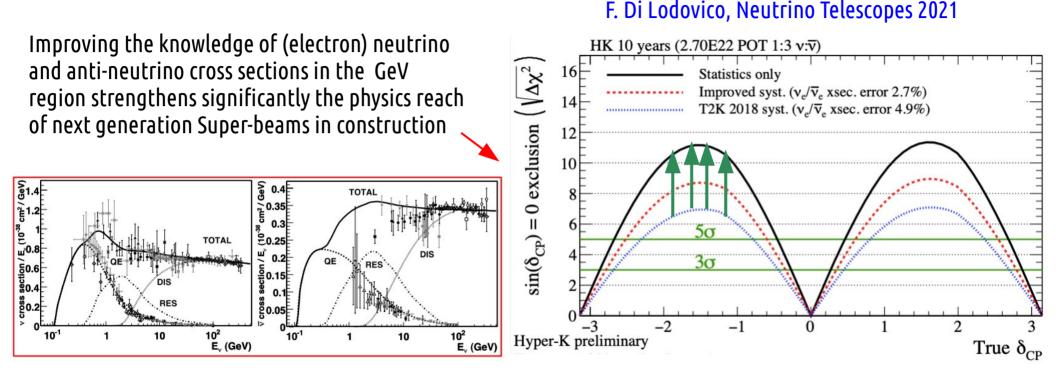
• Protons on Target: 450 GeV, G4beamline run with Fluka Target File with ONLY π/K , Configuration: Triplet + Bending1 + Bending2 \rightarrow Tunnel

POT En (GeV)		in/out Tunnel				in/out Tunnel		
450	34.1	98.3%	1.02 (+)	9.3 (+)	3.9	64.9%	1.05 (+)	9.1 (+)
18/01/2018	G. Brunetti				22			

Accelerator based neutrino beams



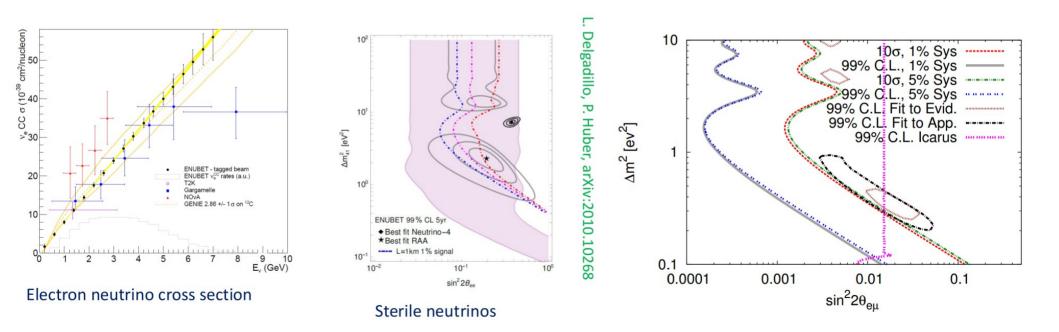
Pion based neutrino beams have a **~60 y long history.** Lots of physics done at different energies.


Enormous **increase in intensity** \rightarrow a leap in technology and complexity

More "**brute force**" than conceptual innovations. Still OK in the era of "statistical errors-dominance" and "large θ_{13} " but ...

New future challenges (δ_{CP} , searches) require timely **changes** or at least **"adjustments"** in this strategy.

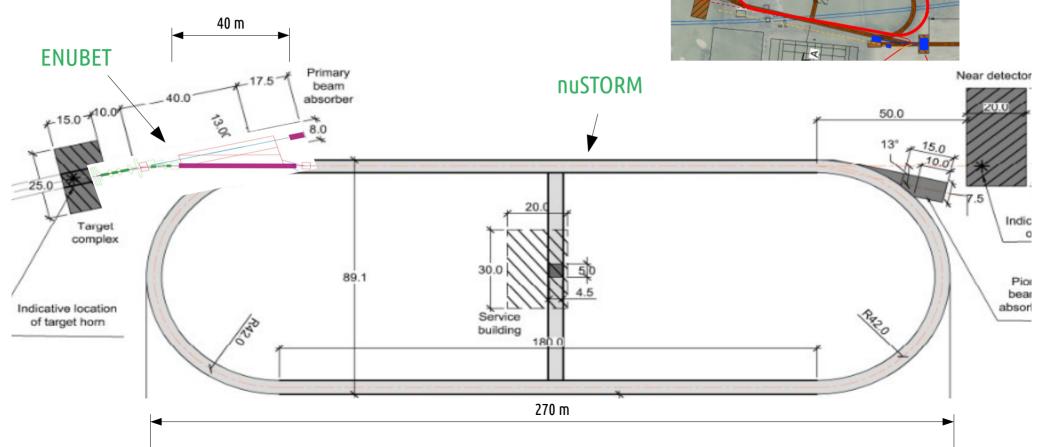
Precision for the Hyper-K/DUNE era



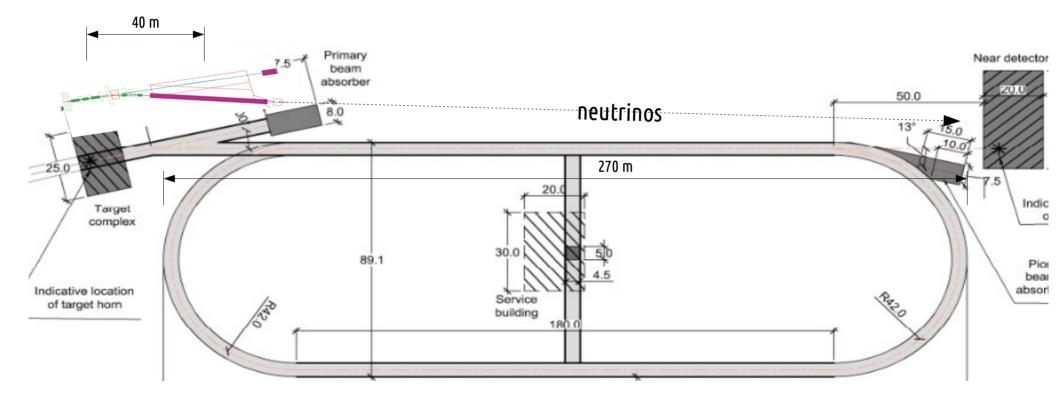
ENUBET and nuSTORM

(see also the **European Strategy** Physics Briefbook, arXiv:1910.11775) To extract the most physics from DUNE and Hyper-Kamiokande, a complementary programme of experimentation to determine neutrino cross-sections and fluxes is required. Several experiments aimed at determining neutrino fluxes exist worldwide. The possible implementation and impact of a facility to measure neutrino cross-sections at the percent level should continue to be studied.

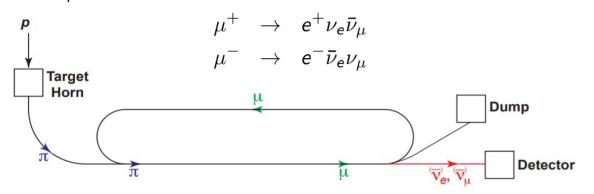
BSM and more opportunities


Low normalization errors is a must to further constrain sterile neutrinos or STUDY them in the - exceptionally exciting - scenario of having them discovered at FNAL !

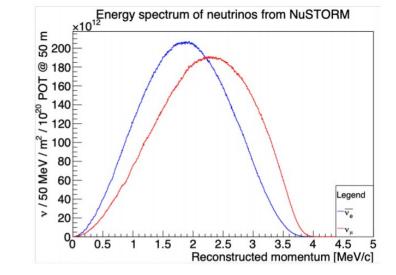
Bonus slides


See also Efthymiopoulos IPPP topical meeting pn Physics with high-brightness stored muon beams https://conference.ippp.dur.ac.uk/event/967/contributions/5072/attachments/4130/4853/ie-IPPWorkshop_11.02.2021_final.pdf

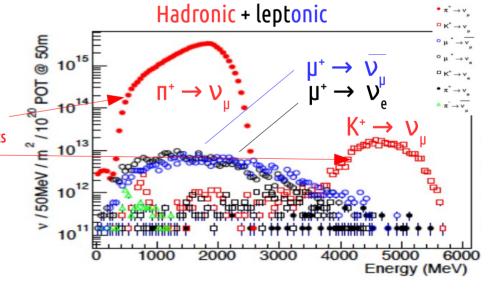
Same layout, staged/mixed operation? Very cost effective. Stronger interdependence.


Initial thoughts

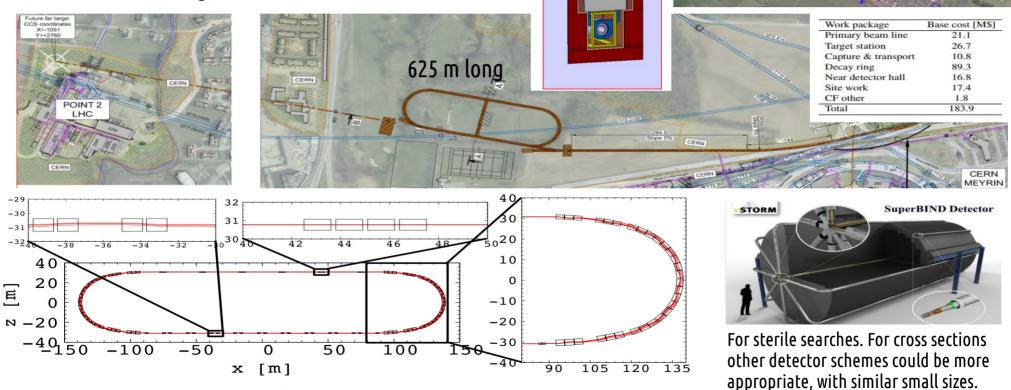
Splitting of proton beamlines + two targets, same detector ? Less cost effective, more degrees of freedom/parallelization



nuSTORM


 $\nu_{_{e}} \, \text{and} \, \nu_{_{u}} \, \text{beams} \, \text{from} \, \text{decay} \, \text{of} \, \text{circulating} \, \text{low-E} \, \text{muons}$

and controls with the tagger



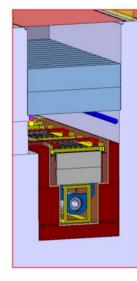
- 100 GeV/c p from SPS (156 kW). Fast extr. (10.5 us).
- Storage ring (1-6 GeV/c with a 16% acceptance)
- 52% of $\pi \rightarrow \mu$ before 1st turn
 - $\rightarrow v_{\mu}$ flash @ "injection pass" \rightarrow These are the components of neutrinos that ENUBET exploits
- 1 τ_µ ~ 27 orbits:
- For 10²⁰ POT (2 × 10²⁰ expected in 5 y) @ 50 m
 - $6.3 \times 10^{16} v_{\mu} / m^2$
 - $3.0 \times 10^{14} v_e^{/} m^2$

nuSTORM

Physics Beyond Colliders study Costing performed at CERN(*) and FNAL (PDR) Beside cross section and sterile neutrino program **Test-bed for 6D cooling, muon collider**

Proposed site

for project

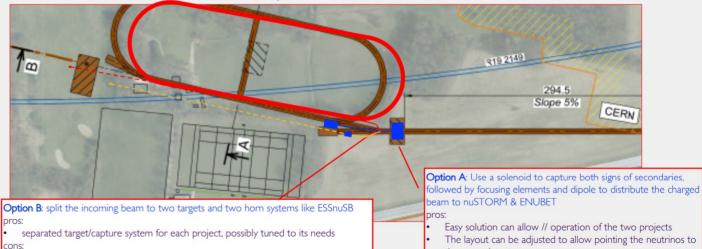

ERN MEYRIN

(*) CERN-PBC-REPORT-2019-003 https://cds.cern.ch/record/2654649?ln=en

nuSTORM in PBC: conclusion of 1 phase

CERN-PBC-2019-003

Targetry – applicable examples


- Target and horn development could profit from existing experience and design existing worldwide, from NuMI, CNGS to T2K beamlines
- All applicable for nuSTORM / ENUBET

25/03/202

M. Calviani et al. // nuSTORM/ENUBET

ENUBET & nuSTORM - implementation

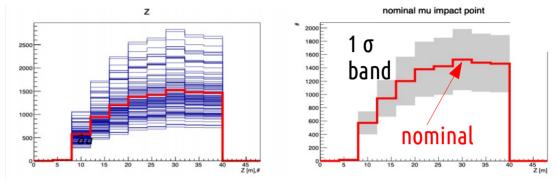
- beam sharing, reduced flux to each project
- requires development of fast cycling magnets, 0.25Hz

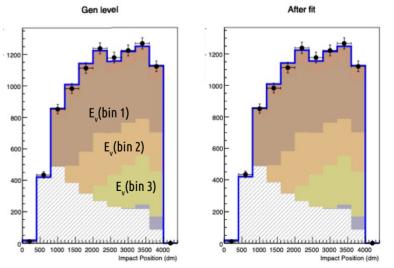
- the same detector
- The solenoid option can work at any pulse duration
- requires development of a solenoid solution!

Framework for systematics

A software framework written within **ROOFIT** to **constrain the neutrino flux from the reconstructed leptons**.

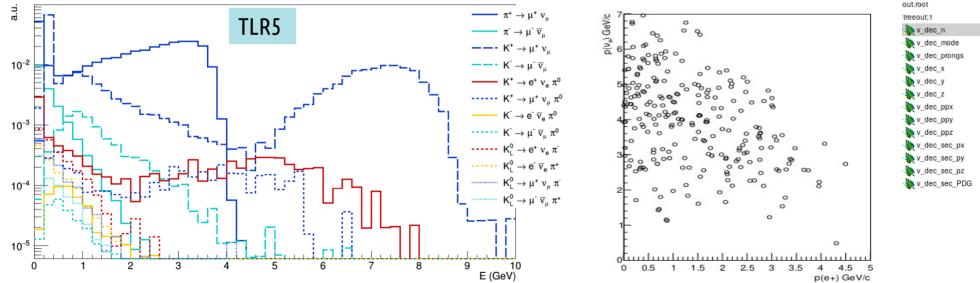
To validate the machinery the impact point along the tagger of muons from kaon decays is considered.


Uncertainty envelope created by sampling hadroproduction parameters of **a toy model** (multiverse method).


Extended likelihood fit of lepton variables with **templates in bins of the associated neutrino energy**:

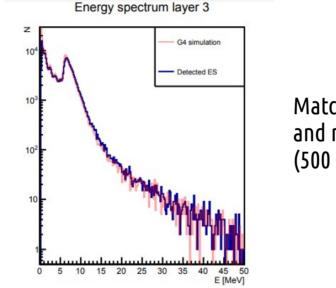
$$PDF = N_S(\vec{\alpha}, \vec{\beta}) \cdot S(\vec{\alpha}, \vec{\beta}) + N_B(\vec{\alpha}, \vec{\beta}) \cdot B(\vec{\alpha}, \vec{\beta})$$

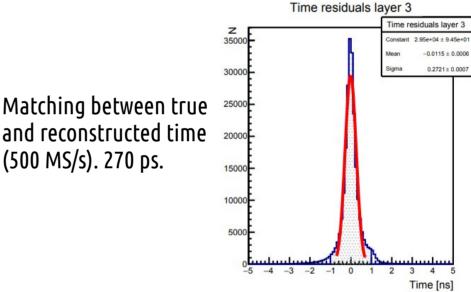
Nuisance parameters from uncertainties related to hadroproduction (a) and beam parameters (β).


Fit the relative normalizations of the templates in $E_v \rightarrow$ flux constraint. In progress: from a toy to the **real ENUBET case using full simulation**.

Framework for systematics

- \rightarrow created a **common data model** to be used for systematic studies (G4TL+G4TAG).
- Unify p-target (FLUKA). Full simulation including the beamline G4 (G4TL). Tagger simulation and lepton reconstruction G4 (G4TAG).
- Information of **all decays producing neutrinos** is stored and linked to the parent particle at the level of target and at the tunnel entrance.
- Allows a full description of **v-flux components** and **linking neutrinos to the relative reconstructed leptons**.




hppTTT e+/nue tag

Waveform analysis

The energy is now reconstructed as it will happen for real data i.e. considering the **amplitudes digitally-sampled signals at 500 MS/s**. **Pile-up** effects treated rigorously.

Matching between true level energy deposits from GEANT4 and fully reconstrucred waveforms

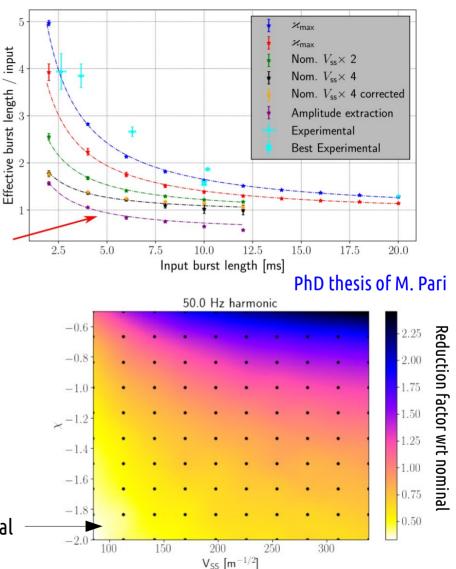
Peak finding efficiencies: Slow ~ 4.5 x 10¹³ POT in 2s Fast ~ horn ~ 10 x slow

Transfer line and extrac-	Hit rate per	detection effi-
tion scheme	LCM	ciency
TLR5 slow	1.1 MHz	97.4%
TLR5 fast	$10.4 \mathrm{~MHz}$	89.7%
TLR6 slow	$2.2 \mathrm{~MHz}$	95.3%

Proton extraction R&D

during LS2: burst mode slow extraction

a **full simulation** to validate the experimental results and **explore possible improvements**, which could not be tested in the machine before the shutdown.


Two different methods (increase of extraction **sextupole strength** and **amplitude extraction**)

pulses between **3 and 10 ms** seems at reach without hardware interventions \rightarrow tests after LS2

Reduction of ripples in the usual slow extraction

Tuning different set of sextupoles: the quad-correcting ones used to act on the chromaticity (X) and the ones used for the extraction (V_{ss})

CERN-TE-ABT-BTP, BE-OP-SPS Velotti, Pari, Kain, Goddard x 2 reduction of the 50 Hz ripples amplitude expected here wrt to nominal

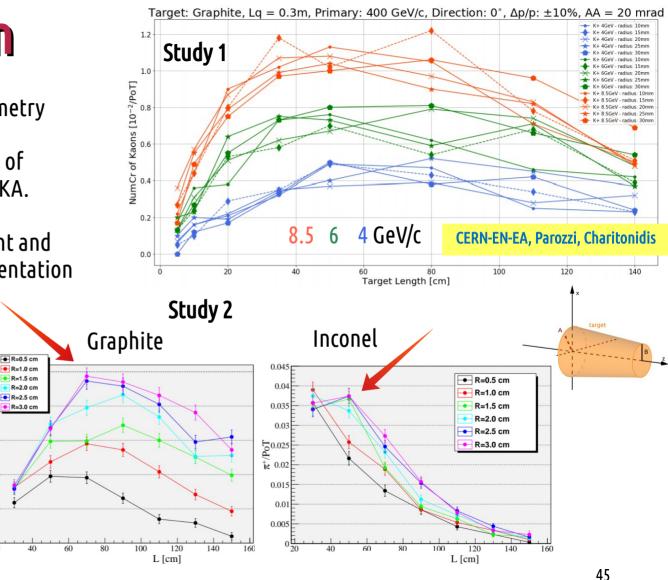
Target optimization

Explored the parameter space of the geometry (also tronco-conical) and some materials (graphite, Inconel) to maximise the yields of mesons in our region of interest with FLUKA.

The current targets are both more efficient and robust under the point of view of implementation and lifetime.

 π^+/PoT

0.03

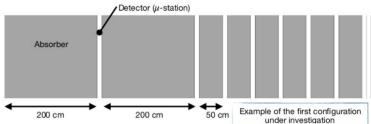

0.02

0.01 20

New baseline targets:

- Graphite: L/ø = 700/60 mm
- Inconel: L/ø = 500/60 mm

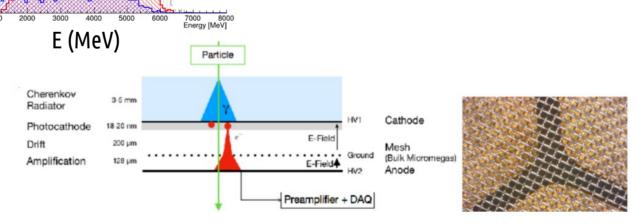
(*) The two studies used different choices for the FOMs


Forward region muons reconstruction

Range-meter after the hadron dump. Extends the tagger acceptance in the forward region to constrain $\pi_{\mu\nu}$ decays contributing to the low-E v_µ.

 $\Pi^{+} \rightarrow \mu^{+} V_{\mu}$

 $K^{+} \rightarrow \mu^{+}v_{\mu}$


Halo µ⁺

The most upstream (hottest) detector needs to cope with a muon rate of ~ 2 MHz/cm² and about 10¹² 1 MeV-n_{eq}/cm².

Design being defined. Possible candidate: fast Micromegas detectors employing Cherenkov radiators + thin drift gap (PICOSEC coll.). Bonus: excellent timing.

Y (mm)

-1000

18 16

Annual report, coll. growth, extension

^xAristotle University of Thessaloniki. Thessaloniki 541 24, Greece.

https://cds.cern.ch/record/2759849/files/SPSC-SR-290.pdf

NP06/ENUBET Annual Report for the SPSC

The ENUBET Collaboration

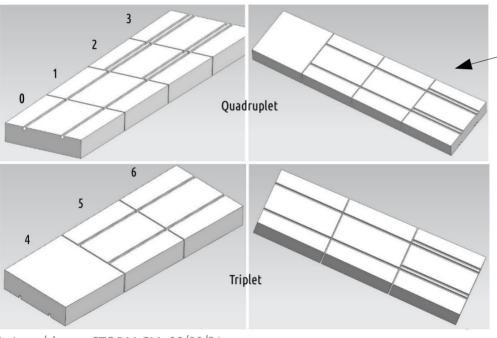
F. Acerbi^{a,b}, I. Angelis^x, M. Bonesini^e, A. Branca^{e,f}, C. Brizzolari^{e,f}, G. Brunetti^f,
M. Calviani^r, S. Capelli^{e,p}, S. Carturan^{d,g}, M.G. Catanesi^h, N. Charitonidis^r, S. Cecchiniⁱ,
F. Cindoloⁱ, G. Collazuol^{c,d}, E. Conti^c, F. Dal Corso^c, C. Delogu^{c,d}, G. De Rosa^{j,k},
A. Falcone^{e,f}, A. Gola^a, B. Goddard^r, F. Iacob^{c,d}, C. Jollet¹, V. Kain^r, B. Kliček^m,
Y. Kudenko^{n,u,v}, Ch. Lampoudis^x, M. Laveder^{c,d}, A. Longhin^{c,d}, L. Ludovici^o,
E. Lutsenko^{e,p}, L. Magaletti^{h,q}, G. Mandrioliⁱ, A. Margottiⁱ, V. Mascagna^{e,p}, N. Mauriⁱ,
L. Meazza^{e,f}, A. Meregaglia^l, M. Mezzetto^c, M. Nessi^r, A. Paoloni^t, M. Pari^{c,d,r},
E.G. Parozzi^{e,f,r}, L. Pasqualini^{i,s}, G. Paternoster^a, L. Patriziiⁱ, M. Pozzatoⁱ, M. Prest^{e,p},
F. Pupilli^{c,d}, E. Radicioni^h, C. Riccio^{j,k}, A.C. Ruggeri^{j,k}, D. Sampsonidis^x, C. Scian^{c,d},
G. Sirriⁱ, M. Stipčević^m, M. Tentiⁱ, F. Terranova^{e,f}, M. Torti^{e,f,1}, S. E. Tzamarias^x,
E. Vallazza^e, F.M. Velotti^r, and L. Votano^t

New forces from <mark>Thessaloniki Univ</mark>.

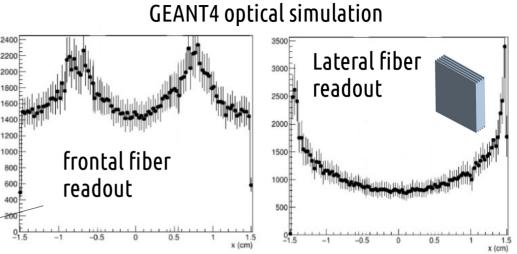
Already active on:

- waveform processing algorithms

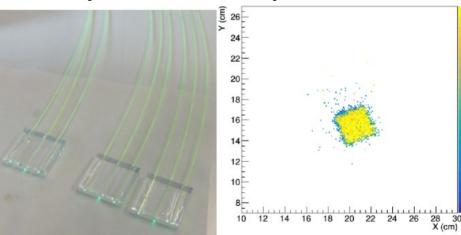
Next:


- members of the PICOSEC collaboration (fast MicroMegas with reduced gap)

- instrumentation of the forward region: physics and detector studies (also at next test beams)


The ERC project has been extended by 12 months up to June 2022.

Updated light readout scheme


- From lateral to frontal light collection
- Safer for injection molding. More uniform, efficient.
- Each tile has readout grooves and "transit" grooves.
- Readout grooves on alternate sides.
- Staggering for the two tiles at larger r.

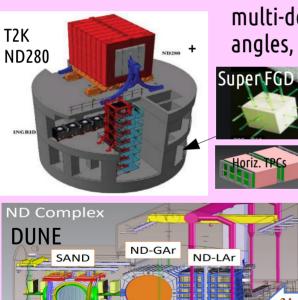
A. Longhin, nuSTORM CM, 09/08/21

Uniformity tests with cosmic rays

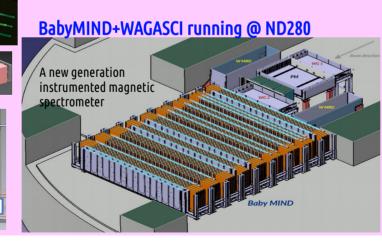
0.9

0.5

0.2

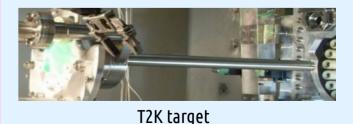

Improvements in standard beams (*)

Beam monitoring systems are being enriched

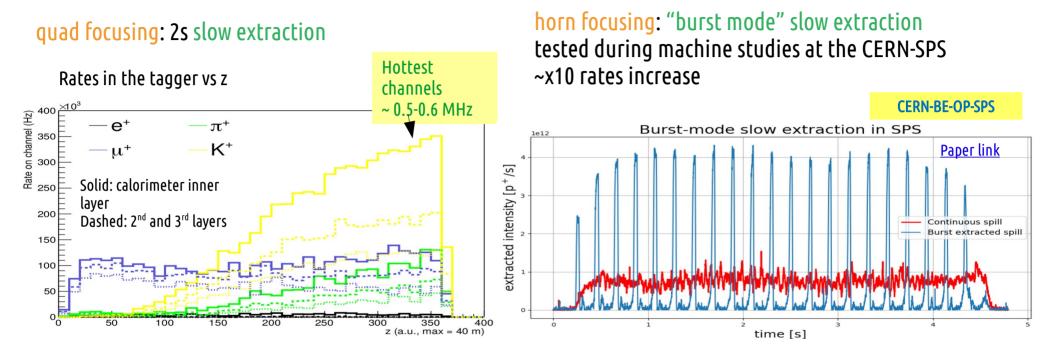


J-PARC Beam Induced Fluorescence monitor Hadro-production data covering larger phase space with replica targets

(*) examples



Near detectors are(have) evolving(ed) towards multi-detector systems with variable off-axis angles, target redundancy, high-granularity.



NA61-SHINE

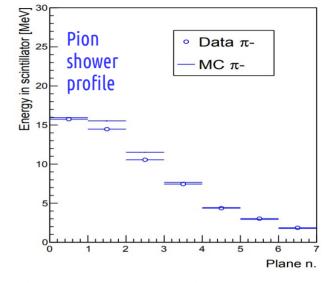
ENUBET: proton extraction, rates, pile-up

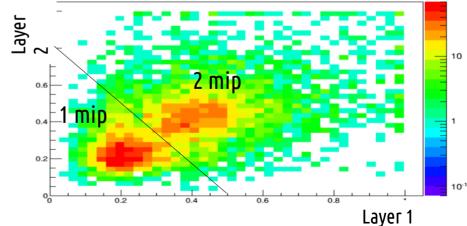
Waveform analysis algorithms developed. With **250 MS/s** sampling: pile-up efficiency loss stays **sub-% up to ~ 1 MHz/ch**

With the increased rates implied in the horn focusing scheme $\rightarrow \sim \text{few \% loss}$

ENUBET: prototypes at the CERN-PS

integrated t_n-layer


charge exchange: $\pi \stackrel{-}{\rightarrow} \underline{n} \pi^0 (\rightarrow \gamma \gamma)$ Trigger: PM1 and VETO and PM2



σ, ~ 400 ps

ENUBET CERN-SPSC 2020 annual report link

JINST <u>arXiv:2006.07269</u>

