The ENUBET ERC project: a new concept neutrino beam for precision physics

A. Longhin

Beihang-Padova, 22/10/2019

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (G.A. n. 681647).
Enhanced Neutrino BEams from kaon Tagging

The goal of ENUBET is to demonstrate the technical feasibility and physics performance of a neutrino beam where *lepton production at large angles is monitored at single particle level*.

Two pillars:
- Build/test a **demonstrator** of the instrumented decay tunnel
- Design/simulate the layout of the **hadronic beamline**

60 physicists, 12 institutions

Univ.: Padova, Bologna, Milano Bicocca, Insubria, Napoli, Bordeaux.

Research inst.: INFN, CERN, FBK (Trento, IT), INR (Russia), IN2P3 (Bordeaux, FR), Ruđer Bošković Institut (Zagreb, Croatia).
A word on the European Research Council calls

Are you a researcher with an **excellent scientific profile** and with **visionary research projects** in mind that you want to **realise in Europe**? The European Research Council (ERC) has a funding scheme that will meet your needs.

Consolidator 2015: 585 M€, 302 grantees

- 1 researcher; 1 host institution; 1 project;
- 1 selection criterion: **scientific excellence**
- No consortia, no networks, no co-financing
- **any field** of research, including social sciences and humanities
- **Independent researchers** from **anywhere in the world**
- Research: in the 28 EU member states or **associated countries**
- **Any career stage** (Consolidator = “**for already independent excellent researchers 7-12 years after PhD**) -up to 2 million euro for a period of 5 years”)
- Host institutions **must provide conditions for the researcher** to direct the research and manage its funding
- Grant is '**portable**' to another host institution, if the grantholder wishes so
The context: neutrino oscillations

“The discovery that neutrinos can convert from one flavour to another and therefore have nonzero masses is a major milestone for elementary particle physics. It represents compelling experimental evidence for the incompleteness of the Standard Model as a description of nature... Neutrino oscillations and the connected issues of the nature of the neutrino, neutrino masses and possible CP violation among leptons are today major research topics in particle physics.”

2015 Nobel prize to Kajita and Mc Donald

Oscillations studied with an artificial beams (T2K)

A lot of exciting and challenging physics is still ahead. The current focus is the measurement of $\text{Prob}(\nu_\mu \rightarrow \nu_e)$ to assess leptonic CP violation.

A world level effort (DUNE-HyperKamiokande starting construction).
Pivotal importance of the ν_e cross section

Leptonic CP violation: $P(\nu_\mu \rightarrow \nu_e) \text{ vs } P(\text{anti-}\nu_\mu \rightarrow \text{anti-}\nu_e)$

- the δ_{CP} phase induces mainly a change in normalization in interaction rates of electron neutrinos (in opposite directions for nu and anti-nu)
- knowing well the ν_e cross section crucial to boost the potential of future experiments (HyperK, DUNE) by decreasing their systematics budget.
- Moreover $\sigma(\nu_e) \text{ vs } E \rightarrow$ unravel 3-flavour CP violation from exotic scenarios (sterile neutrinos, non-standard interactions) with a similar phenomenology

Hyper-K

DUNE
Hyper-Kamiokande

190 kton mass (~8 x SuperKamiokande)
1.3 MW neutrino beam from the pacific coast
295 km baseline
Based on the **Liquid Argon Time Projection Chamber** detector technique. Can get large mass and **terrific views of neutrino interactions**! This is a prototype built at CERN (**protoDUNE SP cryostat**)
The ENUBET physics motivation

THE FUNDAMENTAL QUESTION

The role of neutrinos in the dominance of **matter** over **anti-matter** in our universe?

CP violating effects are small: we need a $O(1\%)$ **knowledge** of the interactions of ν_e with matter

THE OBSTACLE

conventional ν_e beams are flawed by $O(5\%-10\%)$ uncertainties

“The instrinsic limit”: initial neutrino flux is not known well

THE MEASUREMENT

Find experimental evidence of **CP violation** in the leptonic sector
→ ENUBET: monitored beams

Based on conventional technologies, aiming for a 1% precision on the ν_e flux

- Monitor (~ inclusively) the decays in which ν are produced event-by-event
- “By-pass” hadro-production, PoT, beam-line efficiency uncertainties

- Fully instrumented decay region

 $K^+ \rightarrow e^+ \nu_e \pi^0 \rightarrow$ large angle e^+

 ν_e flux prediction = e^+ counting

Removes the leading source of uncertainty in ν cross section measurements

To get the correct spectra and avoid swamping the instrumentation → needs a collimated momentum selected hadron beam → only decay products in the tagger
→ Correlations with interaction radius allows an a priori knowledge of the ν spectra
The ENUBET beamline (baseline option)

- **Proton driver**: CERN (400 GeV), FNAL (120 GeV), J-PARC (30 GeV)
- **Target**: Be, graphite. FLUKA.
- **Focusing**
 - Horn: 2 ms pulse, 180 kA, 10 Hz during the flat top [not shown in fig.]
 - Static focusing system: a quadrupole triplet before the bending magnet
- **Transfer line**
 - Kept short to: minimize early K the decays and those of off-momentum mesons out of tagger acceptance (untagged neutrino flux component)
 - Optics: optimized with TRANSPORT to a 10% momentum bite centered at 8.5 GeV/c
 - Particle transport and interaction: full simulation with G4Beamline
 - Normal-conducting magnets: 2 quad triplets (15 cm wide, L < 2 m, B = 4 to 7 T/m)
 1 bending dipole (15 cm wide, L = 2 m, B = 1.8 T)
- **Decay tunnel**: r = 1 m. L = 40 m, low power hadron dump at the end
- **Proton dump**: position and size under optimization
Neutrino events per year at the detector

- **Detector mass**: 500 t (e.g. Protodune-SP or DP @ CERN, ICARUS @ Fermilab, WC at J-PARC ?)
- **Baseline** (i.e. distance between the detector and the beam dump): 50 m
- 4.5 x 10^{19} pot at SPS (0.5 / 1 y in dedicated/shared mode) or 1.5 x 10^{20} pot at FNAL

- \(\nu_\mu \) from \(K \) and \(\pi \) are **well separated** in energy (narrow band)
- \(\nu_e \) and \(\nu_\mu \) from \(K \) are constrained by the tagger measurement (\(K_{e3} \), mainly \(K_{\mu2} \)).
- \(\nu_\mu \) from \(\pi \): could be constrained by \(\mu \) detectors downstream of had- dump? (under study)

1.2 million \(\nu_\mu \) Charged Current per year

14000 \(\nu_e \) Charged Current per year

98.4% from kaons \(\mu \) contribution is small (tunnel is “short”)
ν_μ CC events at the ENUBET narrow band beam

The neutrino energy is a function of the distance of the neutrino vertex from the beam axis.

The beam width at fixed R (≡ ν energy resolution for π component) is:

- 8 % for r ~ 50 cm, <E_ν> ~ 3 GeV
- 22% for r ~ 250 cm, <E_ν> ~ 0.7 GeV

Binning in R allows to explore the energy domains of DUNE/HK and enrich samples in specific processes (quasi-elastic, resonances, DIS) for cross section measurements.
Machine studies for the horn-based option

“burst” slow extraction: trigger the third integer betatron resonance with a periodic pattern

From an idea “on slide” to a working implementation!

Burst-mode slow extraction in SPS

Real data

Same integrated pot extracted. Protons squeezed into intervals with active horn

CERN-BE-OP-SPS, Velotti, Pari, Kain, Goddard

https://indico.cern.ch/event/777458/
The static beamline: emittance, particle content

Divergence of the kaon beam

K^+ @ tagger entrance

exit

1 m radius

Particle budget @ tagger entrance

π^+

p

e^+

μ^+

Momentum bite $(8.5 \pm 10\%)$ GeV/c

Spectra @
tagger entrance
tagger exit

Low energy high angle π

p (GeV/c)

p (GeV/c)

p (MeV/c)

Loss driven by decays

K^+
The hadronic beamline: FLUKA simulation

1) Optimize shielding to **reduce backgrounds** in the tagger (\(\mu\), \(n\), high angle \(e^+\) and \(\pi^+\))

2) Specs of **rad-hard** upstream focusing quads

3) **neutron irradiation**
Additional beamline options

We are also simulating other beamline schemes:

2 dipoles with an intermediate quadrupole. Increased length of beamline but … →
- Better quality of the beam in the tagger
- Larger bending angle (15.2°) reducing
 - backgrounds from muons
 - probability for neutrinos produced in the straight section to reach the ν detector

- We are putting all these inputs together
- → pindown the best scheme in terms of physics and technical feasibility
The ENUBET tagger

Calorimeter
Longitudinal segmentation
Plastic scintillator + Iron absorbers
Integrated light readout with SiPM

$\rightarrow e^+/\pi^0/\mu$ separation

Integrated photon veto
Plastic scintillators
Rings of 3x3 cm2 pads

$\rightarrow n^0$ rejection

Ultra Compact Module
3x3x10 cm3 – 4.3 X_0
Ke3 positrons reconstruction

Full GEANT4 simulation of the detector, validated by prototype tests at CERN in 2016-2018. Includes particle **propagation** and **decay**, from the transfer line to the detector, hit-level detector response, **pile-up** effects.

Analysis chain
- **Event Builder**: Identify the **seed** of the event (UCM with largest energy deposit in inner layer and > 20 MeV). **Cluster neighboring cells** close in time. **Iterate** on not-yet-clustered cells.
- **e/π/μ separation**
- **e/γ separation**

Event Builder

Multivariate analysis based on **6 variables** (pattern of the energy deposition in the calorimeter) with TMVA

- Signal on the tiles of the photon veto (0-1-2 mip)

Before tuning of shielding

Reco level full sim.

<table>
<thead>
<tr>
<th></th>
<th>ε_{geom}</th>
<th>0.36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ε_{sel}</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>ε_{tot}</td>
<td>0.20</td>
</tr>
<tr>
<td>Purity</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>S/N</td>
<td>0.36</td>
<td></td>
</tr>
</tbody>
</table>

φ cut 0.46

Instrumenting half of the decay tunnel: Ke3 e⁺ at single particle level with a S/N = 0.46
Time tagged neutrino beams?

- Event time dilution → **Time-tagging**
- Associating a single neutrino interaction to a tagged e^+ with a small “accidental coincidence” probability through **time coincidences** E_ν and flavor of the ν measured "a priori" event by event.

S/N ratio will likely improve with further tuning.

Presently with 2.5×10^{13} pot / 2s slow extraction:
- genuine K_{e3} cand. : 80 MHz → 1 every ~ 12 ns
- background K_{e3} cand. ~ 2 x → 1 cand. every ~ 4 ns

With $\delta=0.5 \oplus 0.5$ ns resolutions: already interesting!

Toy MC
The tagger: shashlik with integrated readout

$10 \text{ cm} = 5 \times X_0$

UCM: ultra compact module.

SiPM and electronics embedded in the shashlik calorimeter

CERN PS test beam Nov 2016
Test beam results with shashlik readout

@ CERN-PS T9 line 2016-2017

Tested response to muons electrons and pions

- e.m. energy resolution: $17\%/\sqrt{E}$ (GeV)
- Linearity deviations: $<3\%$ in the 1-5 GeV range
- 0 to 200 mrad \rightarrow no significant differences
- Equalize channel-to-channel response with minimum ionizing particles (mips)
- MC/data in good agreement
- Longitudinal profiles of partially contained π reproduced by MC @ 10% precision

Ballerini et al., JINST 13 (2018) P01028
Polysiloxane shashlik prototypes

Pros: increased resistance to irradiation (no yellowing), simpler (just pouring + reticulation)

A 13X₀ shashlik prototype tested in May 2018 and October 2017 (first application in HEP)

Polysiloxane Iron absorber separators

15 mm thick scintillators to compensate reduced light yields

WLS fiber

Al walls

SiPM

PCB

WLS-SiPM optical coupling
SiPM irradiation measurements at INFN-LNL and CERN

- @ the CN Van de Graaf on July 2017 → 1-3 MeV n with fluences up to $10^{12}/cm^2$ in a few hours

A shashlik calorimeter equipped with irradiated SiPMs later tested at CERN-PS T9 in Oct 2017

Dark current vs bias at increasing n fluences

FBK HD-RGB 1x1mm2 12µm cell size

By choosing SiPM cell size and scintillator thickness (~light yield) properly mip signals remain well separated from the noise even after typical expected irradiation levels

- Mips can be used from channel-to-channel intercalibration even after maximum irradiation.

The tagger: lateral readout option

Light collected from scintillator sides and bundled to a single SiPM reading 10 fibers (1 UCM). SiPM are not immersed anymore in the hadronic shower → less compact but .. much reduced neutron damage (larger safety margins), better accessibility, possibility of replacement. Better reproducibility of the WLS-SiPM optical coupling.

Sampling calorimeter with lateral WLS light collection

May 2018, CERN-PS test beam

Large SiPM for 10 WLS 4x4 mm²
Achievable neutron reduction with lateral readout

- 30 cm of borated polyethylene in front of SiPM
- FLUKA full simulation. 400 GeV protons.

- Very good suppression especially below 100 MeV.
- **Factor ~18** reduction averaging over spectrum.

Neutron energy

- Entering CAL
- Exiting shielding ~ @SiPM in lateral r/o mode

FLUKA

- Si n damage weight function x 1e-10
- n longitudinal position along the tunnel
- x 18 preliminary
The Tagger – Detector R&D

September 2018 CERN-PS: a module with hadronic cal. for pion containment and integrated t_0-layer

- Good signal amplitude
- Checking impact of light connection uniformity and reproducibility of WLS-SiPM optical match. In progress.

Efficiency maps Simulation Resolution PID
The photon veto

@ CERN-PS T9 line 2016-2018

• γ / e⁺ discrimination + timing
 scintillator (3×3×0.5 cm³) + WLS Fiber (40 cm) + SiPM
• light collection efficiency → >95%
• time resolution → σ_t ~ 400 ps
• 1mip/2mip separation

charge exchange: \(\pi^- p \rightarrow n \pi^0 (\rightarrow \gamma \gamma) \)

Trigger: PM1 + VETO + PM2

→ Input for simulations
Custom electronics and algorithms

We are developing in parallel:

1) custom ("cost-effective") electronics to readout the tagger in "triggerless-mode" by digitizing waveforms @ 250-500 MS/s.

2) "smart" algorithms for data reduction and treatment of pile-up

ADC evaluation modules

HSMC bridge

HSMC bus

GPIO-USB2

Pulse gen.

2 x \sqrt{ }

clock(s)

DIGITIZER (frontend)
The tagger demonstrator

- Length ~ 3 m
 - allows containment of shallow angle particles in realistic conditions
- Fraction of ϕ
- Due by 2021

Geant4 simulations
ENUBET in the CERN Neutrino Platform

- **CERN**: already gave a prominent contribution for the success of ENUBET
 - machine studies performed at the SPS
 - East Area beamline for the characterization of the prototypes
 - For **2019-2021** recognition in the Neutrino Platform as **ENUBET/NP06**
 - support and consulting from CERN accelerator experts in collaboration with personnel by the project
 - test of the final proton extraction scheme in the SPS after LS2
 - use of the renovated East Area for the final validation of the demonstrator

5.12 The physics case of the ENUBET project and the exciting possibilities of a tagged neutrino beam are recognized by the SPSC. The committee recognizes the technological development for a neutrino beam without a horn using a quadrupole-based solution, and appreciates the close collaboration of the ENUBET collaboration with the CERN accelerator sector. The SPSC supports the proposed programme, and welcomes the opportunity to continue reviewing the experiment; test-beam requests will be considered via the standard annual procedure. **The Research Board approved the participation of ENUBET in the Neutrino Platform, with reference NP06, on the understanding that**

MoU signed 02/10 UNIPD-INFN-CERN

https://cds.cern.ch/record/2668519/files/M-228.pdf
ENUBET so far

A very diversified program involving:

- Accelerator physics
- Electronics (design and tests)
- Mechanics
- Reconstruction/simulation
- Advanced high-level analysis
- Test beams at CERN, Frascati.
- Visibility in the neutrino community (conferences, workshops).
- Attracted already several students (master, PhD).

http://enubet.pd.infn.it

The ENUBET technique is very promising and the results we got so far exceeded our expectations
ENUBET next steps

• **2019**: freeze **light readout technology**, finalize **tuning of the beamline design** (improve current S/N for e\(^+\)), full assessment of **systematics** on the fluxes
• **By 2021**: **Conceptual Design Report**: physics and costing
• Build the **demonstrator prototype** of the tagger
• **>2021**: (likely) propose a full scale experiment implementation supported by a larger international collaboration.
ENUBET next steps

- **2019**: freeze *light readout technology*, finalize *tuning of the beamline design* (improve current S/N for e⁺), full assessment of *systematics* on the fluxes
- **By 2021**: *Conceptual Design Report*: physics and costing
- Build the *demonstrator prototype* of the tagger
- **>2021**: (likely) propose a full scale experiment implementation supported by a larger international collaboration.

你以为你
Backup
Conclusions

ENUBET is a **narrow band beam** with a high precision monitoring of the flux at source \((O(1\%))\) and control of the \(E_v\) spectrum \((20\% @ 1\text{ GeV} \rightarrow 8\% @ 3\text{ GeV})\)

In the first two and a half years

- first **end-to-end simulation of the beamline**
- Tested the “burst” slow extraction scheme at the CERN-SPS
- feasibility of a **purely static focusing system** \((10^6 v_\mu^{\text{CC}}, 10^4 v_e^{\text{CC}}/y/500\text{ t})\)
- **full simulation of e* reconstruction**: single particle level monitoring
- completed the **test beams** campaign before LS2
- Strengthened the **physics case**: \(\rightarrow\) slow extraction + “narrow band off-axis technique”

The ENUBET technique is **very promising** and the results we got so far **exceeded our expectations**
A neutrino beam for precision physics

The next generation of short baseline experiments for cross-section measurements and for precision ν-physics (e.g. CP violation program, sterile neutrinos, NSI at production/detection/propagation) should rely on:

- a direct measurement of the fluxes
- a narrow band beam: energy known a priori from beam width
- a beam covering the region of interest from sub- to multi-GeV

The ENUBET facility fulfills simultaneously all these requirements

~ 500 t neutrino detector @ 100 m from the target

e.g. ICARUS@FNAL or ProtoDUNE-SP/DP@CERN or a Water Cher. @ J-PARC?
The ENUBET beam line – particle yields

<table>
<thead>
<tr>
<th>Focusing system</th>
<th>π/pot (10^-3)</th>
<th>K/pot (10^-3)</th>
<th>Extraction length</th>
<th>n/cycle $\times 10^{10}$</th>
<th>K/cycle $\times 10^{10}$</th>
<th>Proposal (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horn</td>
<td>97</td>
<td>7.9</td>
<td>2 ms (a)</td>
<td>438</td>
<td>36</td>
<td>x 2</td>
</tr>
<tr>
<td>“static”</td>
<td>19</td>
<td>1.4</td>
<td>2 s</td>
<td>85</td>
<td>6.2</td>
<td>x 4</td>
</tr>
</tbody>
</table>

(a) 2 ms at 10 Hz during the flat top (2 s) to empty the accelerator after a super-cycle.
(c) A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155.

The horn-based option still allows ~x 5 faster statistics but the static option gained momentum since initial estimates were ~x 4 too conservative wrt present simulations!

Furthermore ... advantages of the static extraction:
- No need for fast-cycling horn
- Strong reduction of the rate (pile-up) in the instrumented decay tunnel
- Pave the way to a “tagged neutrino beam” → ν interaction at the detector associated in time with the observation of the lepton from the parent hadron in the decay tunnel (more later)
- Monitor the μ after the dump at % level (flux of ν_μ from π) [under evaluation]
Systematics on the ν_e flux

Golden sample

$$\phi(\nu_e) = \alpha N(K_{e3}) + \epsilon N(\mu)$$

α encodes the residual geometrical (decay lengths, beam spread) and kinematic factors from K decays → "easy" corrections.

Silver sample

$$\phi'(\nu_e) = \alpha N(K) \times BR(K_{e3})$$

The background in the positron sample has to be controlled → simple robust detector validated at test beams ($e/\pi^\pm/\mu$ separation)

Uncertainties from K yields, efficiency and stability of the transfer line are bypassed by the e^+ tagging

Measuring the inclusive rate of K decays is also very powerful. Branching ratios known to < 0.1% (additional uncertainty is small). Residual background is stray pions from beam tails (well characterized in terms of azimuth and longitudinal position)

- **can we get to 1%?** assessment in progress: toy Monte Carlos + full simulation

- Address the effect of each uncertainty and the degree of cancellations allowed by the large correlations between e^+ rate and ν_e flux.
Time tagged neutrino beams: challenges

- **Proton extraction** ~ 2s → Static focusing with slow extraction is mandatory
- **σ_t of the tagger** < 1 ns → OK
- **σ_t of the ν detector** < 1 ns → Feasible but at the limit of present technology
- **Cosmic background** \times 10 → Foresee overburden/cosmic ray tagger
- **small K^+ momentum bite** (not to spoil the ν_e energy reco.) → Feasible but implies flux reduction
- **Tagger-detector time sync.** << 1 ns → OK (direct optical links)

In parallel to the t_0-layer baseline option (light plastic scintillator tracker) we are considering alternative technologies (NUTECH project MIUR). Improve the timing both:

- at the tagger
 - direct readout of **cherenkov light**, **LYSO** crystals with embedded SiPM, MicroMegas
- and at the neutrino detector side
 - **SiPM** based readout of **Ar scintillation light**
Polysiloxane shashlik prototypes

Light yield (normalized to thickness) is ~ 1/3 of plastic scintillator

→ tests light transmission on WLS fibers in absence of air gap

Energy resolution, particle-ID and uniformity in line with the one achieved with plastic scintillator

Efficiency maps at increasing thresholds →

Energy resolution for electrons

Particle ID

Polysiloxane (solid)

Plastic (dashed)
SiPM irradiation measurements at INFN-LNL

- SiPM were irradiated at the CN Van de Graaf on July 2017
- 7MV and 5 mA proton currents on a Be target
- $^9\text{Be}(p,n)^9\text{B}$, $^9\text{Be}(p,\alpha)^7\text{Be}$, and $^9\text{Be}(p,\alpha)\alpha$
- → 1-3 MeV n with fluences up to 10^{12}/cm2 in a few hours
- Tested 12, 15 and 20 μm SiPM cells up to $\sim 2 \times 10^{11}$ n/cm2 1 MeV-eq
 (max non ionizing dose for 10^4ν$_{\text{e}}$ CC at a 500 t ν detector at r = 1 m)
The neutrino energy is a function of the distance of the neutrino vertex from the beam axis.

Momentum of ν_μ^{cc} μ^- on Ar.

GiBUU generator (Gauss flux approx.)
Machine studies for the horn-based option

- Difficult to get below 20 ms → implemented a feed-forward mechanism using BCT data
- Iterative procedure (AutoSpill) → can “sharpen” peaks up to 10 ms in 3 iterations
- at the cost of a somewhat larger variance in peak intensity.

- Versatile/general: mixed continuous-burst possible.
- General software tool developed for CR operations.
- Present studies suggest that this mode does not increase significantly radiation losses at septa
- ENUBET: would the static focusing be preferred, burst mode could be used to constrain cosmics background.
- Now focusing on simulation/further ideas, improvement in diagnostics used for feedback (BCT).
- Studies performed in a limited time → will benefit greatly of more data in the future!
Beamline shielding tuning studies

- Studies in progress to optimize the shielding to shield muons and other backgrounds.

G4Beamline

Particle budget @ tagger entrance

Factor >3 reduction in muons at ~ constant background from other sources (e^+, π^+)

Inermet180

Copper

Azimuthal angle

The bulk of μ^+ along dipole bending plane

FLUKA (muon energy deposition map)

Besides shielding a further reduction of muons can be achieved by removing a section in ϕ in the upstream part of the tagger
Particle rates in the tunnel

Static focusing system
4.5 x 10^{13} pot in 2 s (400 GeV)

Radius = 1 m from the axis of the tunnel

Rates vs longitudinal position in the tunnel (before any reconstruction)

- Primary particles background largely reduced with tuning in the shielding
- The second part of the tunnel is significantly favored in terms of signal-to-background
- With static focusing scheme rates in the second half are below 10 kHz/cm²
Machine studies for the horn-based option

- Performed Jul/Aug/Nov 2018 at the SPS

Idea: synchronize proton beam and horn current pulses
+ keep rates compatible with tagger (10 ms pulses “slow extr.”)

“burst” slow extraction: trigger the third integer betatron resonance with a periodic pattern

M. Pari (CERN doctoral student, Univ. of Padova) @ SLAWG meeting of 5/12/2019
https://indico.cern.ch/event/777458/
Positron ID from K decay

Full GEANT4 simulation of the detector, validated by prototype tests at CERN in 2016-2018. Includes particle propagation and decay, from the transfer line to the detector, hit-level detector response, pile-up effects.

Analysis chain

- **Event Builder**: Identify the seed of the event (UCM with large energy deposit) and cluster neighboring modules (in time and space)
- **e/π/μ separation**: Multivariate analysis based on 6 variables (pattern of the energy deposition in the calorimeter) with TMVA
- **e/γ separation**: Signal on the tiles of the photon veto

Instrumenting half of the decay tunnel: $K_{e3}^{+} e^{+}$ at single particle level with a S/N = 0.46

- \(\varepsilon_{\text{geom}} \) = 0.36
- \(\varepsilon_{\text{sel}} \) = 0.55
- \(\varepsilon_{\text{tot}} \) = 0.20
- Purity = 0.26
- S/N = 0.36
- \(\varphi \) cut = 0.46
The Tagger – positron ID from K decay

Event Builder

Seed of the event = UCM in first layer with energy deposit > 20 MeV \(\rightarrow \) link neighboring modules with time (1ns) and position requirements

e/\pi separation

TMVA multivariate analysis based on 5(+6) variables (pattern of the energy deposition in the calorimeter)

e/\gamma separation

\(n^0 \) rejection: we require 3 layers of t0 before first calorimeter energy deposit compatible with a mip (0.65-1.7 MeV)