NP06 / ENUBET

A. Longhin

Padova Univ. and INFN on behalf of the ENUBET Coll.

NBI 2024, 7/10/2024 Tōkai, Japan

NP06/ENUBET development

- A dedicated short baseline neutrino beam with a 1% precision in v_e and v_μ fluxes aimed to a refined near detector
- Reduce the dominant systematics on flux → precise cross section measurements →
 consolidate the long-baseline program with high quality experimental inputs

A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155

https://www.pd.infn.it/eng/enubet/

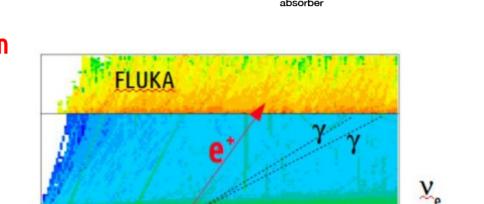
ERC project 6/2016- 12/2022

Enhanced NeUtrino BEams from kaon Tagging ERC-CoG-2015, G.A. 681647, PI A. Longhin, Padova University, INFN

PI: A. Longhin, F. Terranova. Techn. Coord: V. Mascagna

- CERN Neutrino Platform: NP06/ENUBET
- Physics Beyond Colliders —

• NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)


ENUBET

... the first "monitored neutrino beam":

production of neutrino-associated leptons monitored at single particle level in an instrumented decay region

$$K^{+} \rightarrow e^{+} v_{e} \pi^{0} \rightarrow \text{(large angle)} e^{+}$$

 $K^{+} \rightarrow \mu^{+} v_{\mu} \pi^{0} \text{ or } \rightarrow \mu^{+} v_{\mu} \rightarrow \text{(large angle)} \mu^{+}$

v_e and v_μ flux prediction from e⁺/μ⁺ rates

Transfer Line

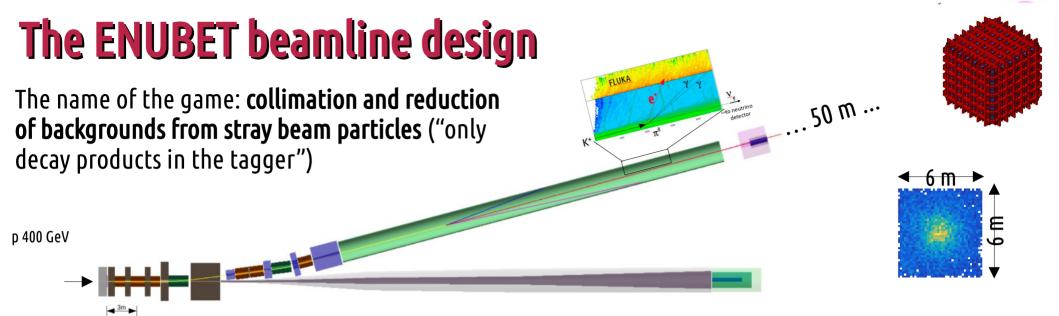
 π^-/K

Proton beam

K⁺

- Needs a collimated mom-selected hadron beam → only the decay products hit the tagger
 → manageable rates and irradiation in the detectors
- Needs a "short" decay region : ~all v_e from K, only ~1% v_e from μ (large flight length)

NB: it requires a **specialized beam**, not a "pluggable" technology for existing super-beams (unfortunately!)


«to neutrino
detector

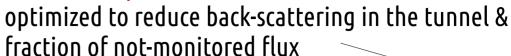
Hadron

Instrumented decay tunnel

- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance

- Focuses 8.5 GeV +/- 10% mesons (v spectrum ROI ~ DUNE)
 - Length: 26 m
 - Tagger length: 40 m
 - Neutrino detector (500 t) 50 m after the hadron dump
 - 14.8° bending angle
- documented in EPJ-C 83, 964, 2023

$Design \ and \ performance \ of \ the \ ENUBET \ monitored \ neutrino \ beam$


E. Acerbi¹, I. Angelis²¹, L. Bomben²³, M. Bonesini³, F. Bramati³³⁴, A. Branca³³⁴, C. Brizzolari³⁴, G. Brunetti³⁴, M. Calviani⁵, S. Capelli⁵³, S. Carturan¹, M.G. Catanesi⁵, S. Cecchini⁵, N. Charitonidis, F. Cindolo⁵, G. Cogolo¸ G. Collazuol⁵¹¹0, F. Dal Corso⁵, C. Delogu³¹0, G. De Rosa¹¹, A. Falcone³⁴, B. Goddard⁵, A. Gola¹, D. Guffanti³³, L. Haliċ³0, F. Jacob⁵¹0, C. Jolle¹¹0, V. Kain⁵, A. Kallitsopoulou³⁴, B. Kliček³0, Y. Kudenko¹³, Ch. Lampoudis²¹, M. Laveder⁵¸¹0, P. Legou²⁴, A. Longhin²¸⁵¸¹0, L. Ludovic¹³, E. Lutsenko³¹, I. Magaletti³¹⁴, G. Mandrioli⁵, S. Marangoni³⁴, A. Margotti³, V. Mascagna²²¸²3, N. Mauri³¹, J. McElwee¹₀, L. Meazza³⁴, A. Meregaglia¹⁶, M. Mezzetto⁵, M. Nessi⁰, A. Paoloni¹, M. Parti⁵¸¹0, T. Papaevangelou²⁴, E.G. Parozzi⁴, L. Pasqualini³¹¹³, G. Paternoster¹, L. Patrizit³, M. Pozzato⁵, M. Prest³¸¹, F. Puplill⁵, E. Radicioni⁵, A.C. Ruggeri¹¹, G. Saibene²¸³, D. Sampsonidis²¹, C. Scian¹⁰, G. Sirri⁰, M. Stipčeviċ³⁰, M. Tenti⁵, F. Erranova³⁴, M. Torti³, S.E. Tzamarias²¹, E. Vallazza³, F. Velotti⁵, L. Votano¹

https://arxiv.org/pdf/2308.09402.pdf

https://link.springer.com/article/10.1140/epjc/s10052-023-12116-3

... a closer look

hadron-dump: ~

proton-dump:

3 layers (C \rightarrow Al \rightarrow Fe)

Magnets: existing standard (warm)

6 quads + 2 dips + collimators

W foil: absorbs e⁺

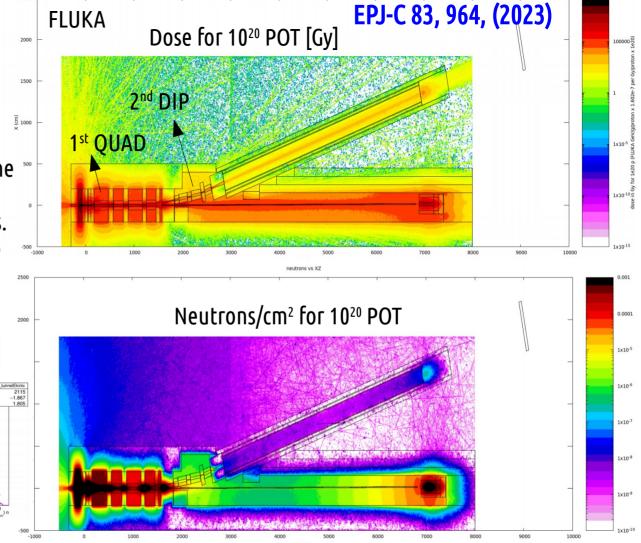
Inermet absorber @ tagger entrance with conical channel

Target: graphite L = 70 cm, r = 3 cm

Simulation: optics optimization (TRANSPORT). Design: G4beamline.

Irradiation (FLUKA). Systematics (GEANT4, fully parametric, access to particle history).

p 400 GeV


Irradiation levels

Neutrons in the tagger

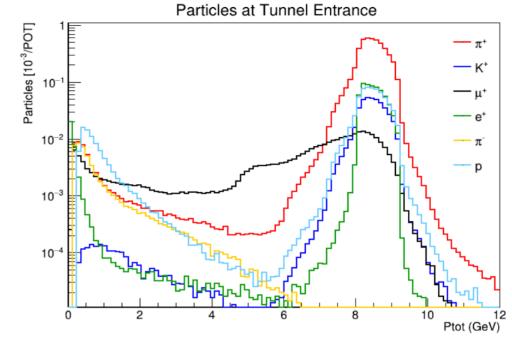
Dose is sustainable by magnets even in the hottest regions ($<300 \text{ kGy/}10^{20} \text{ pot}$).

Neutrons simulations guided the design of the instrumentation → 30 cm of Borated PE (5%) added to protect the Silicon Photomultipliers. Good lifetime (7e9 n/cm²/10²0 pot). Accessible eventually.

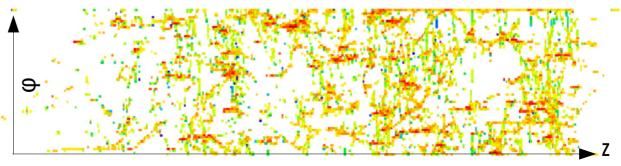
30 cm BPE 5%

A. Longhin NBI 2024 ENUBET https://arxiv.org/pdf/

Particle budget and rates


e_{no} bet

Entering the tagger:


 $4.6 \times 10^{-3} \, \pi^*/pot$ $0.4 \times 10^{-3} \, K^*/pot$

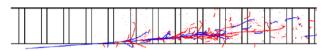
The hottest regions of the tagger see $\sim 500 \text{ kHz/cm}^2$ with $2.5 \times 10^{13} \text{ pot/2.4 s}$ (slow extraction) Pile-up mostly non critical but has to be treated.

→ the detector has to be fast enough, radiation hard, costeffective (large area)

Hit map for e⁺in a few ns

- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance
 - Lepton event-by-event reconstruction

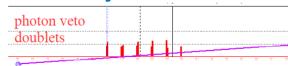
Light r/o (SiPM)

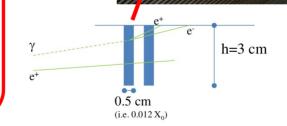

Frontal Compact Module

 $3 \times 3 \times 10$ cm³ – 4.3 X₀

Calorimeter

Longitudinal segmentation
Plastic scintillator + Iron absorbers
Integrated light readout with SiPM


→ e⁺/n[±]/µ separation



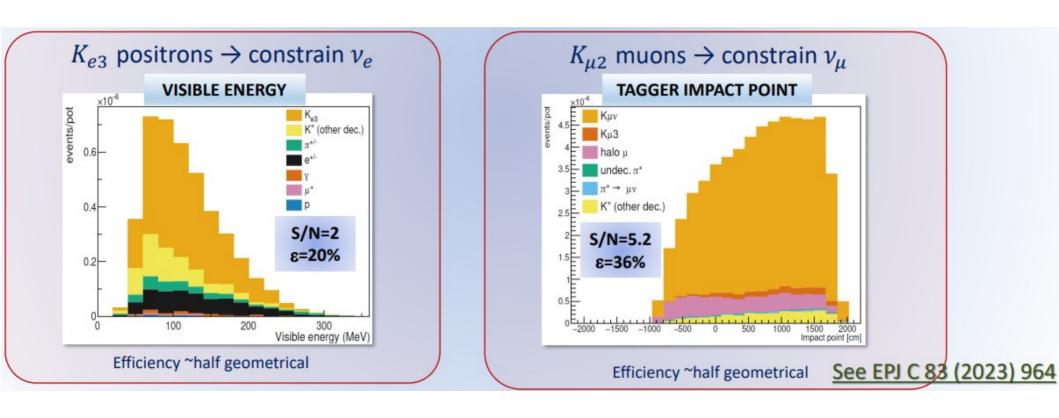
Integrated photon veto

Plastic scintillators rings of 3×3 cm² pads

30 cm of borated

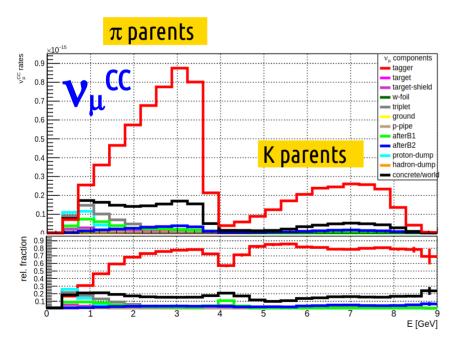
polyethylene (5%)

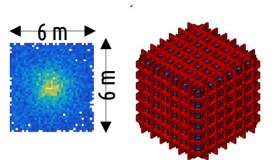
e+ (signal) topology


 π^0 (background) topology

Lepton event by event reconstruction

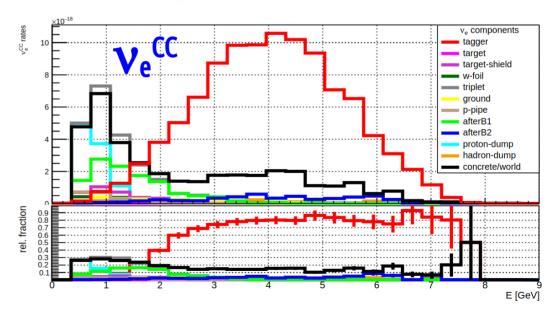
GEANT4 simulation. Event building: clustering of cells in space and time (accounting for **pile-up**) → PID with a Multilayer Perceptron


- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance
 - Lepton event-by-event reconstruction
 - Achievable v^{cc} event spectra/rates and systematics reduction

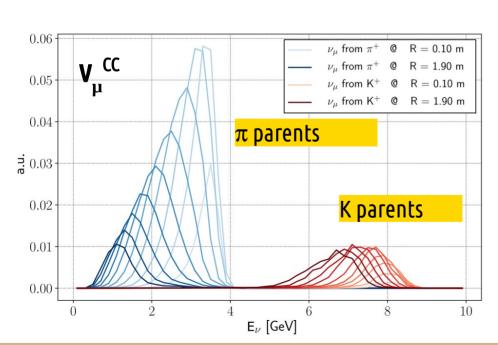

A. Longhin NBI 2024 ENUBET 11

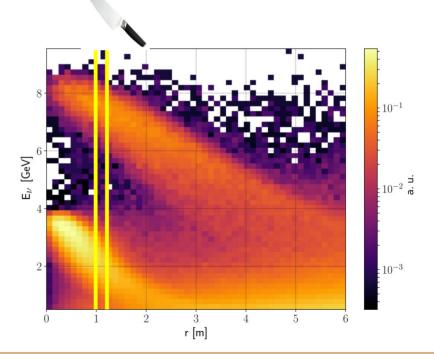
$v_{\mu e}$ CC spectra at detector

500t @ 50 m after the hadron dump @ 400 GeV \rightarrow **0.7 Mv**_{μ} cc with 1e20 POT


ightarrow **10000** $\mathbf{v}_{\mathrm{e}}^{\mathrm{CC}}$ with ~1e20 POT

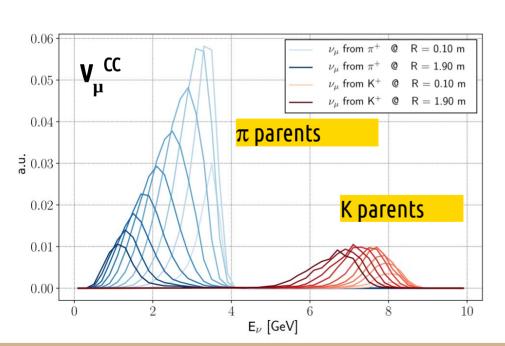
The protoDUNE(s) could be such a detector (an evident asset for a possible siting at CERN)

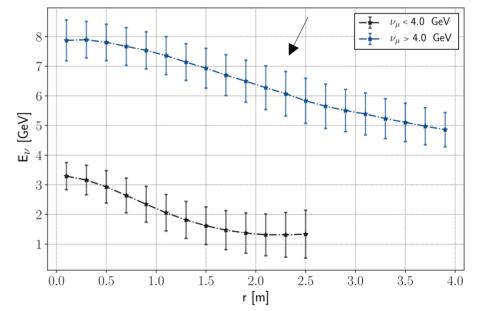

EPJ-C 83, 964, (2023)



ν_μ fluxes decomposition: NBOA (~PRISM)

"Narrow-band off-axis technique" (NBOA): bins in the **radial distance from the center of the beam** → **single-out well separated neutrino energy spectra** → strong prior for **energy unfolding**, independent from the reconstruction of interaction products in the neutrino detector. "Easy" rec. variable. A kind of "off-axis" but without having to move the detector (thanks to the small distance of the detector)!

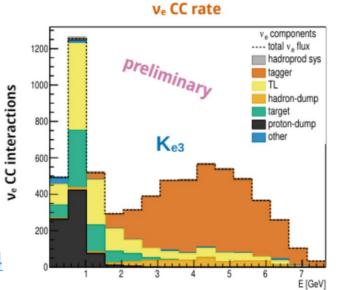


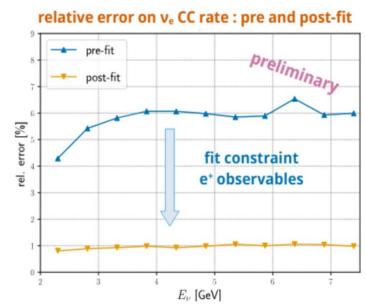

ν_{μ} fluxes decomposition: NBOA (~PRISM)

"Narrow-band off-axis technique" (NBOA): bins in the **radial distance from the center of the beam** → **single-out well separated neutrino energy spectra** → strong prior for **energy unfolding**, independent from the reconstruction of interaction products in the neutrino detector. "Easy" rec. variable. A kind of "off-axis" but without having to move the detector (thanks to the small distance of the detector)!

Error bands visualize the rms of the energy distributions

Precision on the neutrino flux

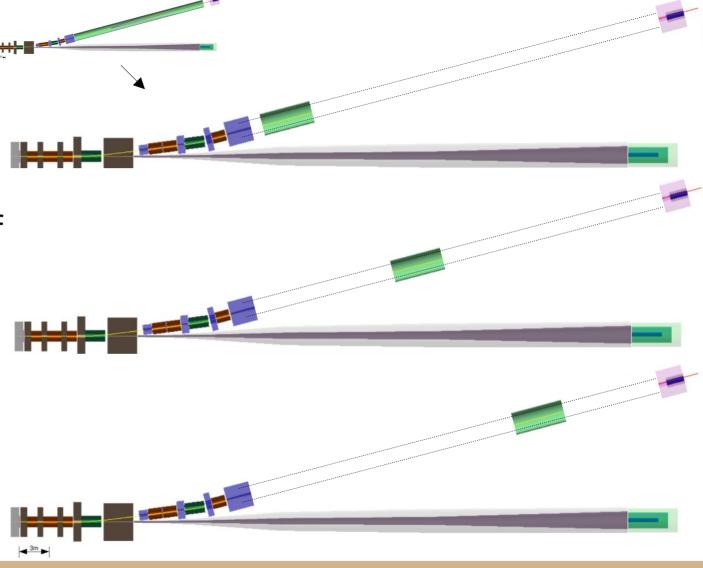

• considered the dominant sys. (hadroproduction) extracted from hadroproduction experiments at the SPS (NA56/SPY), which gives a 6% uncertainty on flux


• added as an additional prior the rate, position and energy distributions of positrons from K decay

reconstructed in the tagger

Flux uncertainty for v_{μ} and v_{e} drops from 6% to 1% using positrons only. Further improvements expected by adding the reco. muons

F. Bramati poster at Neutrino2024


In progress: add detector effects, magnet currents, beam component, material budget uncertainty, and exploit the additional constraints from reconstructed muons (paper in preparation)

An option?

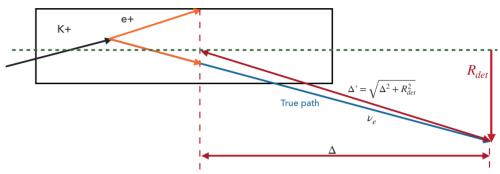
Study the systematics introduced but a partial "instantaneous" coverage of the full decay region

UA1/NOMAD/T2K magnet rail system

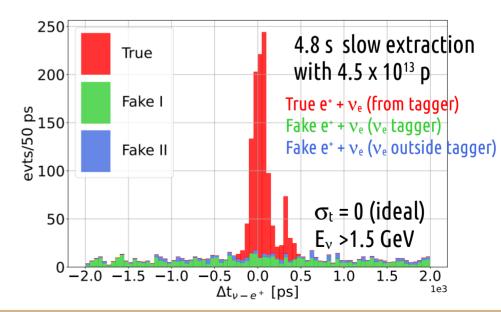
- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance
 - Lepton event-by-event reconstruction
 - Achievable v^{cc} event spectra/rates and systematics reduction
 - Time tagging scenarios

t-tagging for interacting v

The goal of ENUBET (monitored beam): get a sample of associated leptons to constrain the flux. To do this an event-by-event information is needed. Timing has to be "just" good enough to limit the pileup (not too aggressive).

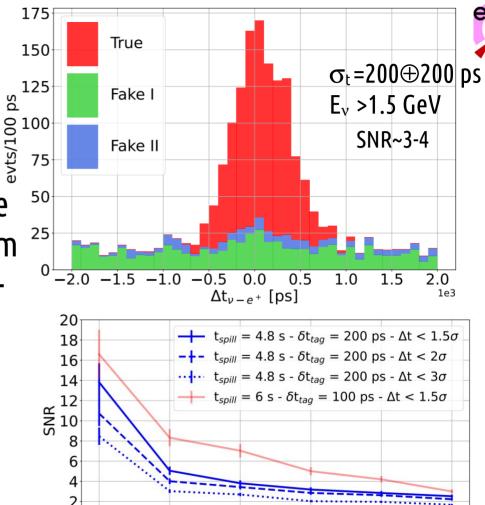

 \rightarrow Time correlation btw K_{e3} e⁺ and v_e candidates with the full simulation (reconstruction, backgrounds) \rightarrow

Difference in path between the e^+ and v_e (decay vertex position is unconstrained \rightarrow we assume e^+ and v_e to be collinear) \rightarrow "irreducible" time spread: $\sigma_{\Delta t} = 74$ ps(*)


(*) already corrected for the position of the neutrino vertex

(**) could improve decreasing the tagger radius

$$\Delta t = t(v_e) - [t(e^+) + \Delta'/c]$$



ENUBET & time-tagging

EPJ-C 83, 964, (2023)

By applying a cut on the Δt bewteen the ν_e and e^+ candidates the SNR passes from ~2 (for the inclusive e^+ sample) up to ~8-10 for neutrino-associated e^+

Precise value depends on σ_t of tagger and neutrino detector and the slow extraction spill duration

200

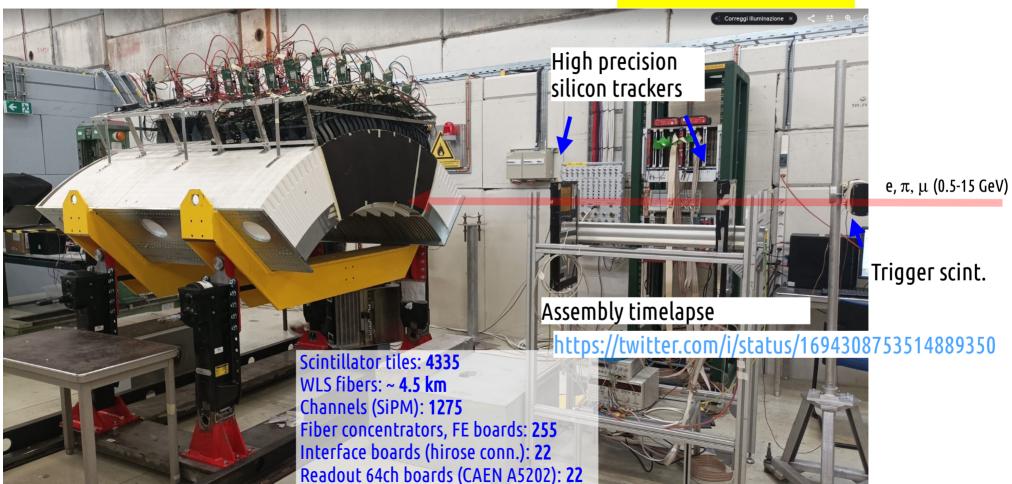
 δt_{v-det} [ps]

300

500

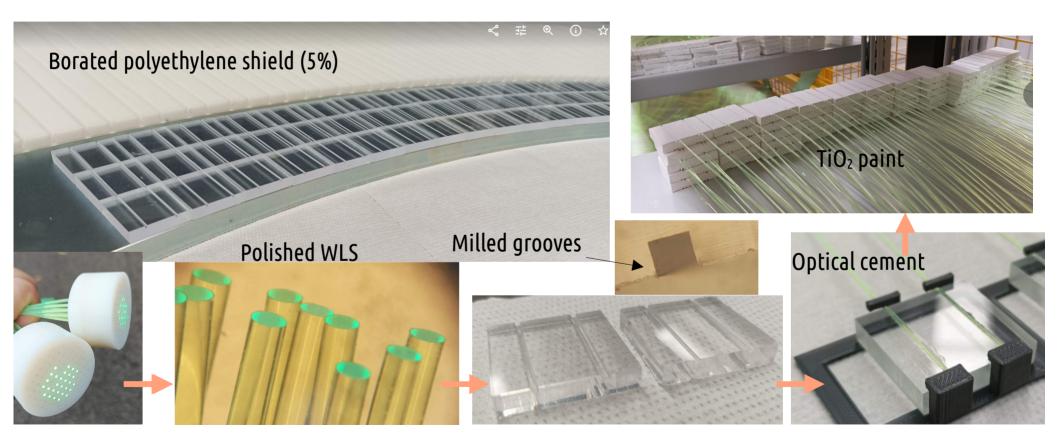
400

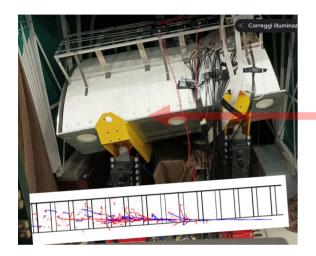
100

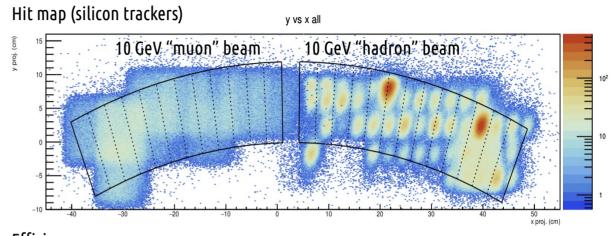


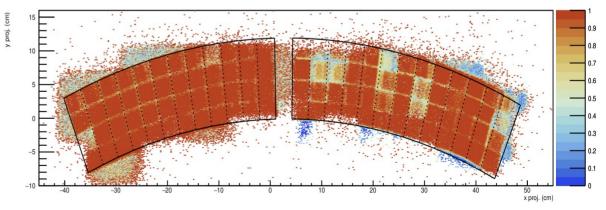
- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance
 - Lepton event-by-event reconstruction
 - Achievable v^{cc} event spectra/rates and systematics reduction
 - Time tagging scenarios
 - The prototype demonstrator

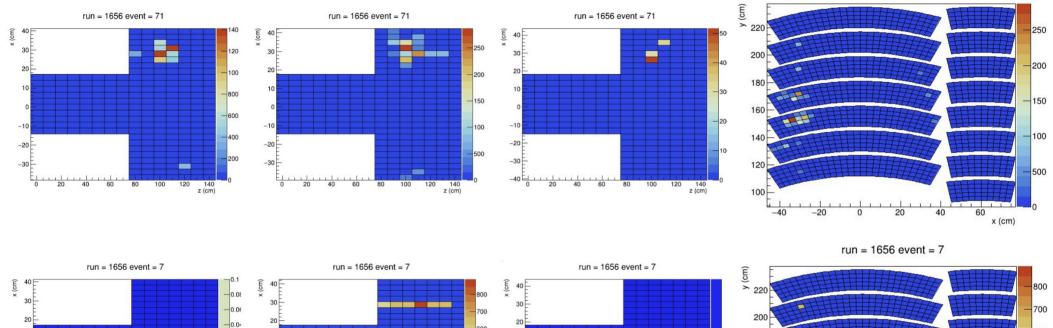
The ENUBET tagger demonstrator

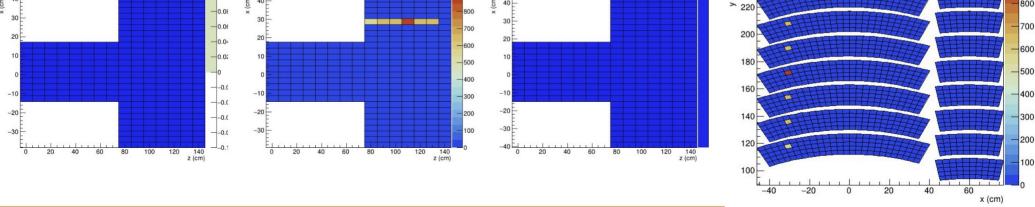

10/22 + 08/23 + 08/24 @ CERN-PS-T9



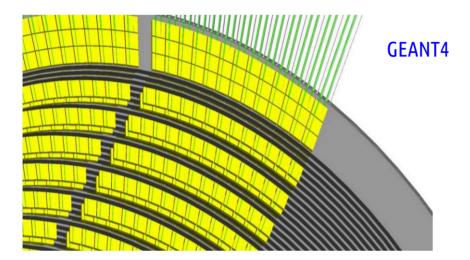

Examples: inclined and calibration runs

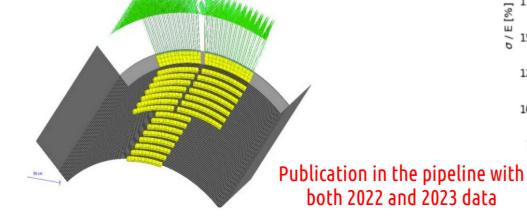

200 mrad tilt run

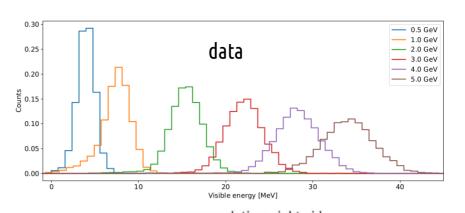

Efficiency map

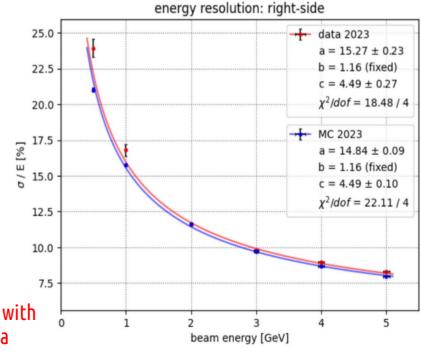


Event display (10 GeV hadrons and muons)

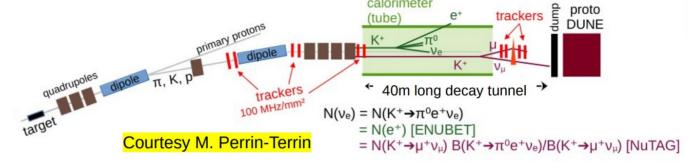



run = 1656 event = 71





Electron energy resolution



A. Longhin NBI 2024 ENUBET _____

- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance
 - Lepton event-by-event reconstruction
 - Achievable v^{cc} event spectra/rates and systematics reduction
 - Time tagging scenarios
 - The prototype demonstrator
- Going even beyond: NuTAG (tracking of neutrino parents)

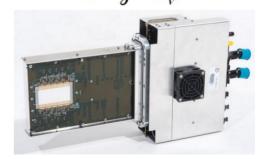
NuTAG: pushing on σ_t (tagger) and $\sigma(E_v)$

NuTAG: state-of-the-art silicon trackers with excellent timing ("4D")

→ tag the parent of the decay

Ideal for 2-body decays ($\pi_{\mu 2}$, $K_{\mu 2}$) to reconstruct E_{ν}

 $p_{\pi/K}$ (parent momentum): tracking before and after a dipole θ_{ν} (with the interaction vertex in the detector)


Large BR statistics: low-intensity runs. Flux of v_e : inferred from knowledge of B.R.($K_{\mu 2}$)/B.R.(K_{e3})

If μ can also be tracked: predict the ν position -> Relax time matching

Could provide E_{ν} resolutions at the % level. Studies progressing. Challenges: upgrade of NA62 GigaTracker, reconstruction.

	Available	Max. Radiation	Max. Flux
NA62-GTK	since 2015	$10^{14} n_{eq}/cm^2$	2 MHz/mm²
HL-LHC	before 2028	10 ¹⁶⁻¹⁷ n _{eq} /cm²	10-100 MHz/mm ²

$$E_{v} = \frac{\left(1 - m_{\mu}^{2} / m_{\pi}^{2}\right) p_{\pi}}{1 + v^{2} \theta_{v}^{2}}$$

A. Baratto-Roldan et al. arXiv: 2401.17068

A. Longhin ENUBET

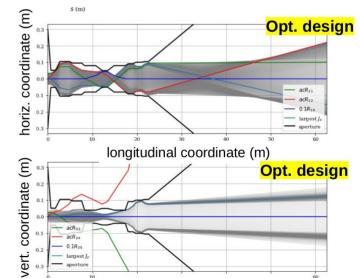
- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance
 - Lepton event-by-event reconstruction
 - Achievable v^{cc} event spectra/rates and systematics reduction
 - Time tagging scenarios
 - The prototype demonstrator
- Going even beyond: NuTAG (tracking of neutrino parents)
- Physics Beyond Colliders study

PBC-SBN

CERN Physics Beyond Colliders short baseline neutrino (PBC-SBN)

M. Jebramcik

<u>link</u> to talk @ PBC annual meeting link to Neutrino2024 poster


4 directions:

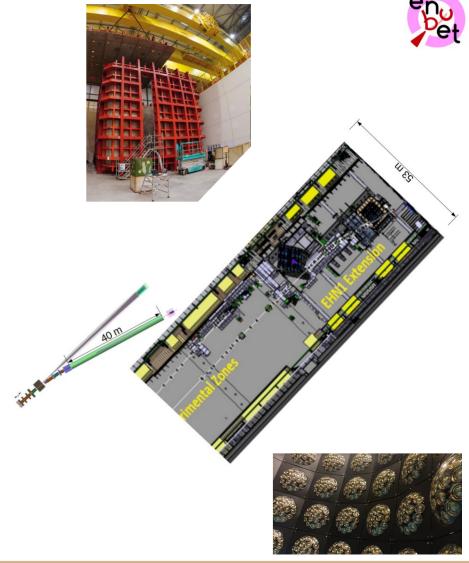
- Improved design. Compatible with ENUBET & NuTAG
- Compatible with the CERN fixed target programme (more v with less p)
- with fluxes down to O(1) GeV → Hyper-Kamiokande
- Conceptual level feasibility study at CERN: siting constraints, costs

The new design uses moderately "bolder" assumptions on the quads apertures (very conservative for NP06/ENUBET) \rightarrow multi-objective optimization, CNGS-like target, shorter line \rightarrow

1.4 × 10⁻³ K⁺/pot → 3.5 × higher Large gain! → physics performences of ENUBET with this beamline is in progress (~ similar S/B).

worked out worked out being studied being studied

longitudinal coordinate (m)

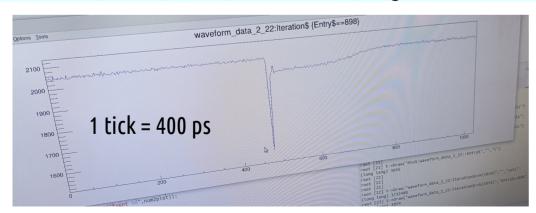

PBC-SBN perspectives

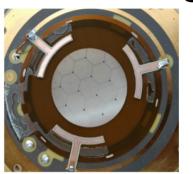
These recent studies shows that ~ $10^4 \, v_e^{\, cc}$ and $5 \times 10^5 \, v_\mu^{\, cc}$, with a flux normalization at 1%, over ~ 5 years in a detector of similar size to the ProtoDUNEs are feasible. Compatibly with SHiP.

Studies about possible siting at CERN are in progress.

Shooting on the **protoDUNEs** at the North-Area would be an ideal optimization of resources → checking feasibility/costs in practice

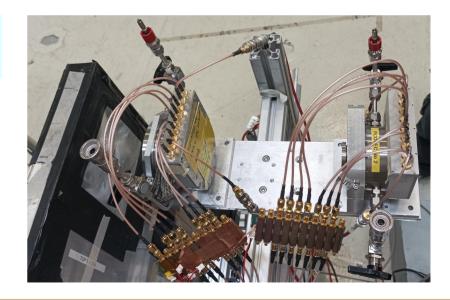
Other areas capable of accommodating detectors of similar size are being considered (also a WCh. detector ~ "WCTE++" would be extremely interesting)




- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance
 - Lepton event-by-event reconstruction
 - Achievable v^{cc} event spectra/rates and systematics reduction
 - Time tagging scenarios
 - The prototype demonstrator
- Going even beyond: NuTAG (tracking of neutrino parents)
- Physics Beyond Colliders study
- Add forward monitoring for ENUBET

Forward monitoring with PICOSEC Micromegas

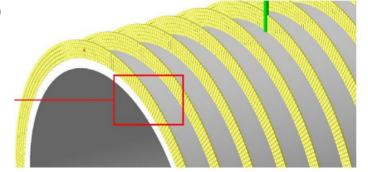
- Instrument also the forward region: observe μ from π decays \rightarrow constrain low-E ν_{μ} component
- Instrumented hadron dump PIMENT (PIcosecond MicromEgas for eNuber), ANR2022-25
- Prototype tested with the ENUBET demonstrator, at T9 in Aug. 2024 → few 10s of ps resolutions achieved
- Athens, CNRS, INFN, Thessaloniki, Zagreb



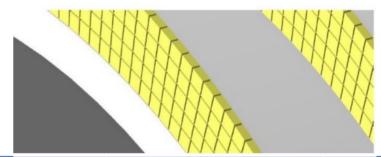
19 channel anode 1 cm

https://doi.org/10.1016/j.nima.2018.04.033

CERN Aug. 2024



- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance
 - Lepton event-by-event reconstruction
 - Achievable v^{cc} event spectra/rates and systematics reduction
 - Time tagging scenarios
 - The prototype demonstrator
- Going even beyond: NuTAG (tracking of neutrino parents)
- Physics Beyond Colliders study
- Add forward monitoring for ENUBET
- MNB@ESS


A low-E_v monitored beam at ESS?

e_{no} bet

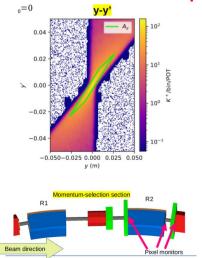
- MNB@ESS WP6 of the ESSnuSB
 - previous talk by Tamer Tolba
- $E_p = 2$ GeV. No K and π multiplicity very low. Mitigated by a very LARGE intensity.
- Must **monitor muons**. They are not as forward as for ENUBET due to lower boost → cyl. geom. still OK.
- Design based on (PICOSEC) MicroMegas
- The spill structure (2.86 ms) makes **pileup** more delicate than for ENUBET (→ finer granularity 1cm²)
- Use only a fraction of the extracted protons
- → Constrain on the flux seems feasible
- with a sufficient statistics of neutrinos
- End-to-end studies as for ENUBET being carried on

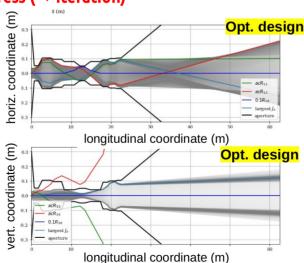
A. Branca <u>link</u>

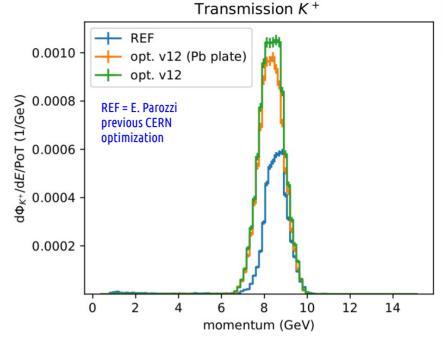
11111				
	ENUBET@CERN	MNB@ESS	Notes	
Proton driver	400 GeV/c	2 GeV	At ESS we exploit pion decays and muon decays in flight [no K]	
Secondaries	8.5 GeV/c	About 1-2 GeV		
Proton extraction	2 s	2.86 ms	This is a key item WP6 has assessed in 2023	
Decay in flight of muons	Negligible	It is the main source of ν_{e} at the \mbox{ESS}		

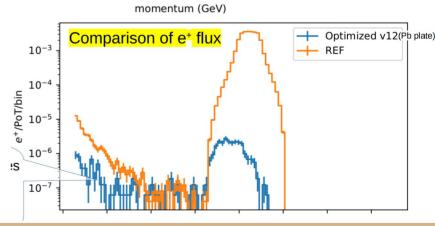
Conclusions

CERN Aug. 2024

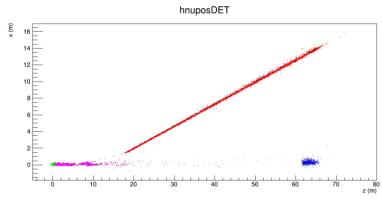

- Next two years will be crucial NP06/ENUBET
- Preparing for a dedicated workshop
 Neutrinos@CERN organized by PBC/Neutrino
 Platform at CERN in 23-24 January 2025
- and a **contribution to the ESPPU** process starting in spring 2025 ("European Strategy for Particle Physics Update").
- The importance of the inclusion of an **even larger community** does not need to be emphasized!
- Thanks!

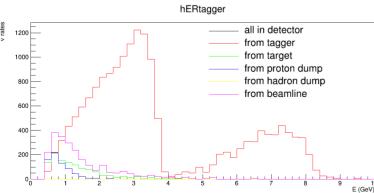


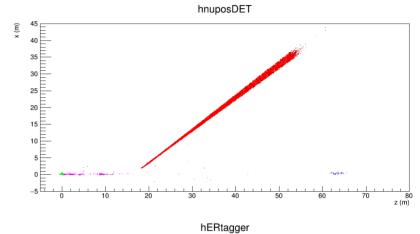

Demonstrate detector performance (PID, The demonstrator homogenity, eff.), scalability, cost effectivess... WLS routing 3 LCM 90°, partially instrumented **BPE 5%** t, doublet Sampling iron/scint calo t₀-layer A. Longhin NRI SASA

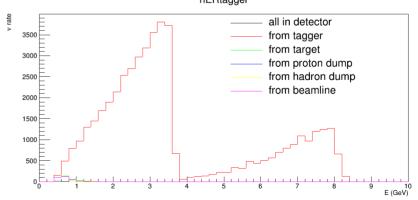

The PBC-SBN beamline optimization

- <u>link</u> to the talk at the PBC annual meeting by M. Jebramcik 26/03/24
- Analyzed 16 targets, 7 drift spaces, 18 quad. parameters (6 magnets with different length, aperture, gradient) → 26 free parameters
- Multiple (3) objectives: K+ & π+ transmission as possible and the beam size has to be as small as possible in the momentum selection and the decay tunnel
- 1) Linear optimization with multi-objective genetic algorithm (MOGA)
- 2) Verification with a start-to-end BDSIM simulation
- Optimized beamline 7 m shorter (from 30 to 23 m). Uses a CNGS-like target
- 1.2 cm lead foil in the middle of momentum selection to suppress e[→]
- 1.41x10⁻³ K⁺/pot → 3.5x improvement. Huge gain! → tuning of backgrounds with the full chain is in progress (→ iteration)

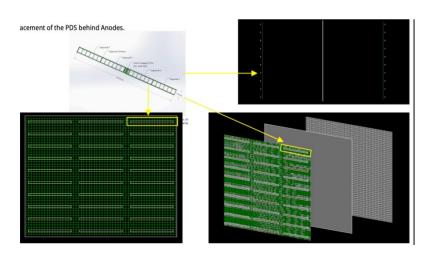

A. Longhin NBI 2024 ENUBET

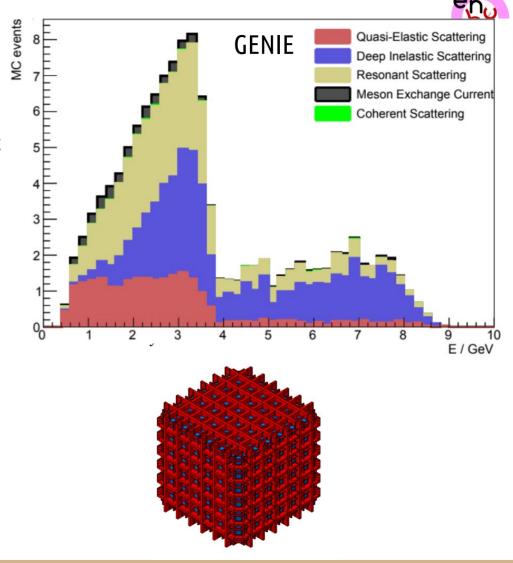

v_{μ}^{cc} spectra at detector




With a SC second dipole

tlr6v6



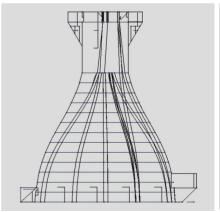


v detector studies (ENUDET)

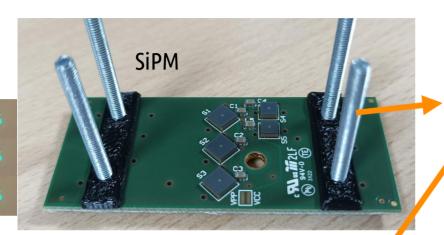
This R&D is being pursued by ENUBET together with the DUNE-SoLAR coll. and is instrumental in **exploiting liquid Argon in a tagged neutrino beam**. A dedicated task force is addressing:

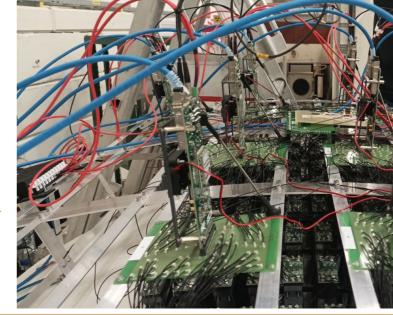
- The achievable σ_t of ProtoDUNE overhauled for DUNE Phase II. It will be equipped with an enhanced photon detection system. The corresponding light yield will improve time resolution for GeV neutrinos below 1 ns.
- Simulation of neutrino interactions (GENIE) and reconstruction effects (i.e. role of cosmic rays background) to assess the physics reach on the cross section for specific channels

Fiber bundling with "concentrators"

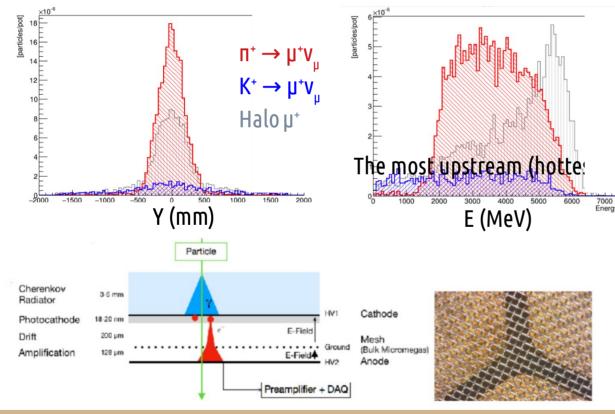


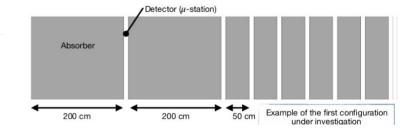
bundling of the WLS fibers with 3D printed "fiber concentrators" + in situ polishing





Readout scheme





Forward region muons reconstruction

Range-meter after the hadron dump. Extends the tagger acceptance in the forward region to constrain $\pi_{\parallel 2}$ decays contributing to the low-E ν_{\parallel} .

ector needs to cope with a muon rate of ~ 2 MF

Micromegas detectors employing Cherenkov radiators + thin drift gap?
Bonus: cutting-edge timing (O(10) ps).

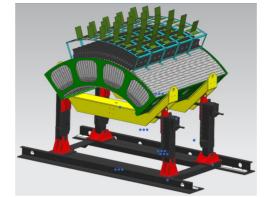
→ PIMENT project! →

ENUBET: demonstrator

Assembly timelapse

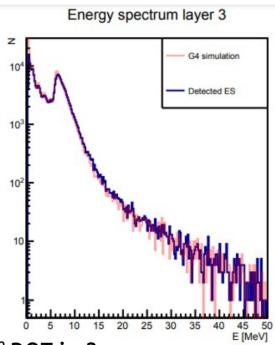
https://twitter.com/i/status/1694308753514889350

The ENUBET demonstrator in numbers


- Scintillator tiles: 1360
- WLS: ~ 1.5 km
- Channels (SiPM): 400
 - Hamamatsu 50 um cell
 - 240 SiPM 4x4 mm² (calo)
 - 160 SiPM 3x3 mm² (t₀)
- Fiber concentrators, FE boards: 80
- Interface boards (hirose conn.): 8
- Readout 64 ch boards (CAEN A5202): 8
- Commercial digitizers: 45 ch
- hor. movement ~1m
- tilt >200 mrad

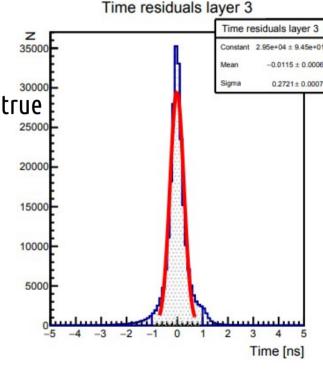
Demonstrator construction at LNL-INFN labs

Group pictures

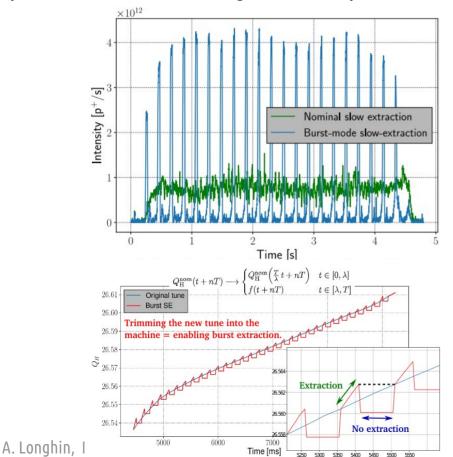


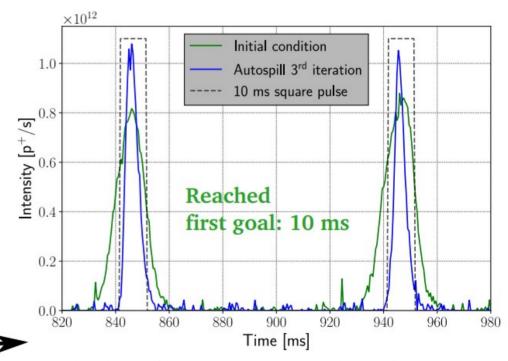
Event pile-up analysis

The energy is now reconstructed as it will happen for real data i.e. considering the **amplitudes digitally-sampled signals at 500 MS/s**. **Pile-up** effects treated rigorously by "fitting" superimposing waveforms.


Matching between true level energy deposits from GEANT4 and fully reconstructed waveforms

With 4.5 x 10¹³ POT in 2s

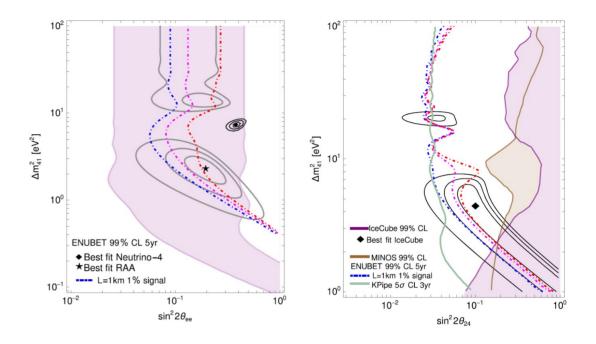

- 1.1 MHz rate in the hottest channels
- Peak finding efficiency = 97.4 %


Matching between true and rec. time (500 MS/s). 270 ps.

Proton extraction R&D for horn focusing

before LS2: burst mode slow extraction achieved at the SPS. Iterative feedback tuning allowed to reach ~10 ms pulses without introducing losses at septa

PhD thesis of M. Pari (UniPD + CERN doctoral). Defended 23/2/21.


BSM

Sterile neutrinos: some results already available

L.A. Delgadillo, P. Huber, PRD 103 (2021) 035018

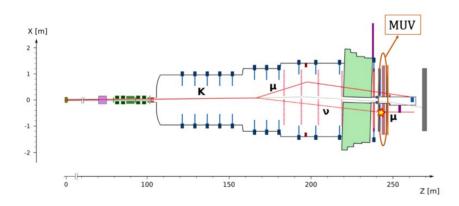
P. S. Bhupal Dev, Doojin Kim, K. Sinha, Yongchao Zhang, Phys. Rev. D 104, 035037 [ALP] J. Spitz, Phys. Rev. D 89 (2014) 073007 [KDAR]

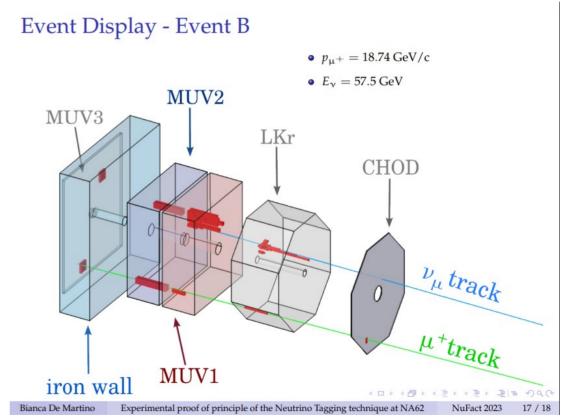
Work ongoing for studies of **Dark Sector** and **non-standard neutrino interactions** to assess potential of SBL versus Near detectors:

- Pros: energy control of the incoming flux.
 Outstanding precision on flux and flavor
- Cons: limited statistics

A. Longhin, NUINT24, 16/04/24 51

For the first time at nufact2023

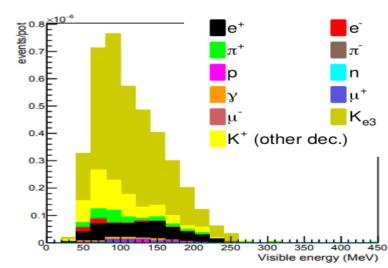



https://indico.cern.ch/event/1216905/contributions/5448754/attachments/2702123/4690877/NuFACT_NuTagging_DeMartino.pdf

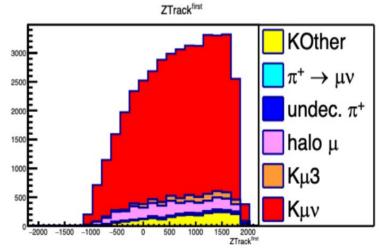
Bianca De Martino (NA62)

S/B=5.5, 2 candidates

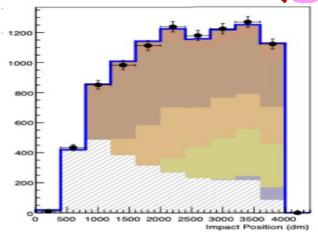
Muon from K decay + neutrino interaction in Xe calorimeter in an existing experiment!


Lepton reconstruction

GEANT4 simulation. Event building: clustering of cells in space and time (accounting for **pile-up**) → PID with a Multilayer Perceptron


Half of efficiency loss is geometrical

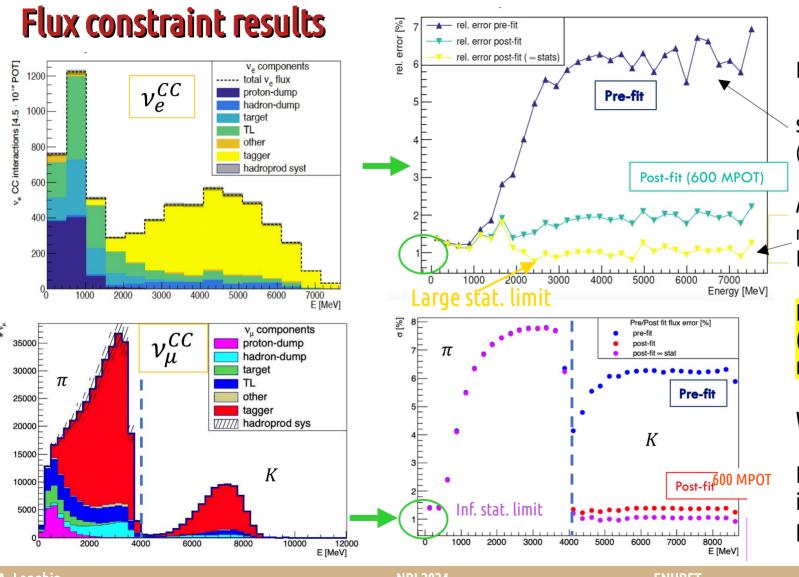
e* candidate visible energy (MeV)


μ⁺ candidate z coord (cm)

Constraint from lepton rates → flux systematics reduction

- Build S+B model to fit lepton observables
 - 2D distributions in z(lepton) and reconstructed-energy
- include hadro-production (HP), transfer line (TL), detector systematics as nuisance parameters (α , β , ...)

$$L(N | N_{exp}) = P(N | N_{exp}) \cdot \prod_{bins} P(N_i | PDF_{Ext.}(N_{exp}, \overrightarrow{\alpha}, \overrightarrow{\beta})_i) \cdot pdf_{\alpha}(\overrightarrow{\alpha} | 0,1) \cdot pdf_{\beta}(\overrightarrow{\beta} | 0,1)$$



Each histogram component corresponds to a bin in E_v

→ Extended Maximum Likelihood fit

Use a parametric model fitted to hadro-production data from NA56/SPY experiment:

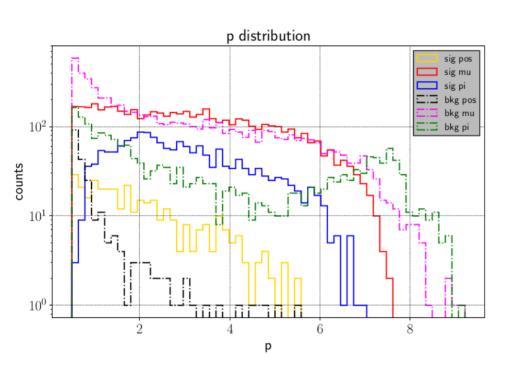
- compute variations ("envelopes") using multi-universe method ("toy exp") for the lepton observables and the flux of neutrinos
- evaluate "post-fit" variance of the expected flux

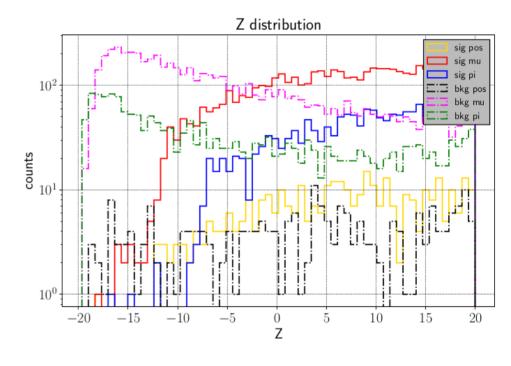
Before constraint:

sys. budget from HP (NA56/SPY data): ~6%

After constraint (fit to lepton rates measured by the tagger):

Down to ~1%!


Full simulation data (beamline, detector, reconstruction)


Works for both ν_e and ν_u

Finalizing the analysis to include detector effects, publication in preparation

Tagger particle budget at true level

