

High precision neutrino flux measurements with ENUBET

M. Pozzato (INFN-Bologna) on behalf of ENUBET collaboration - P2.040

ENUBET (Enhanced NeUtrino BEams from kaon Tagging)

A new-concept v_e source based on tagging of e^+ from $K^+ \to e^+\pi^0 v_e$ decays

The goal of the project is to demonstrate the feasibility of real time monitoring of the positrons produced at high angle in the decay tunnel of conventional **neutrino beam** to obtain a x 10 reduction in the systematics on the neutrino flux → Highly beneficial for the **leptonic CP violation** international program at long baselines $(v_u \rightarrow v_e)$. ENUBET is a **ERC Consolidator Grant-2015** project (n° 681647, P.I. A. Longhin) with a 2 MEUR funding started on 1/6/2016 w. a 5 years duration.

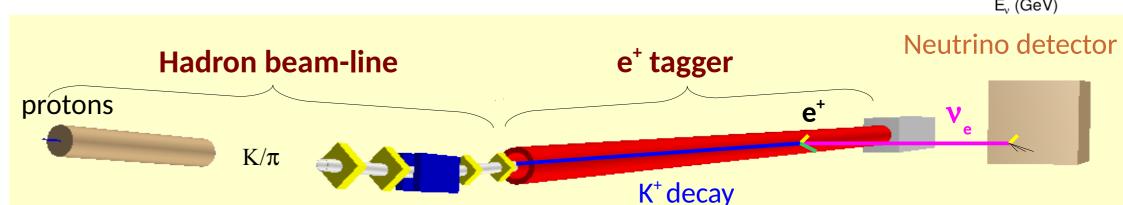
 $O(10^4) v_e^{cc}$ in a few years of run at existing proton drivers with a 500 t scale detector [1]

A traditional beam

- Passive decay region
- v_{α} flux relies on **ab-initio** simulations of the full chain
- large uncertainties from model dependency

The tagged beam

• Fully instrumented decay region


 $\mathbf{K}^{\scriptscriptstyle +} \to \mathbf{e}^{\scriptscriptstyle +} \mathbf{v}_{\scriptscriptstyle \perp} \boldsymbol{\pi}^{\scriptscriptstyle 0} \to \text{large angle } \mathbf{e}^{\scriptscriptstyle +}$

• v flux prediction = e⁺ counting

 $\pi^{^+}$ background

rticles 800 800

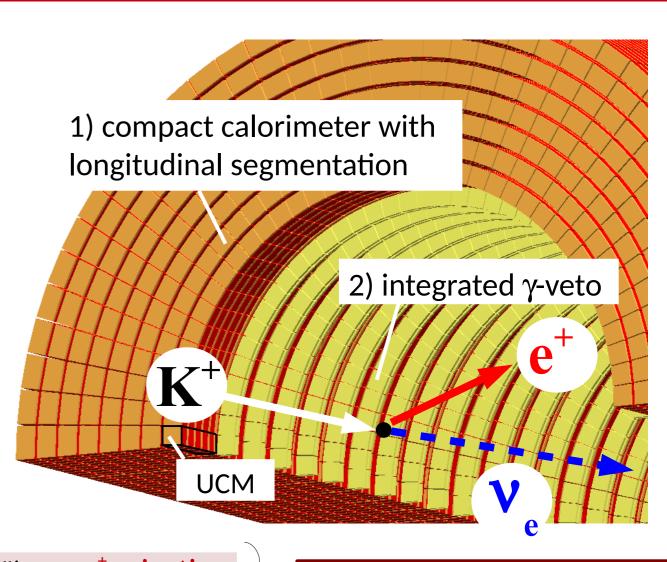
300

- Hadron beam-line: collects, focuses, transports K⁺ to the e⁺ tagger
- e⁺ tagger: real-time, "inclusive" monitoring of produced e⁺

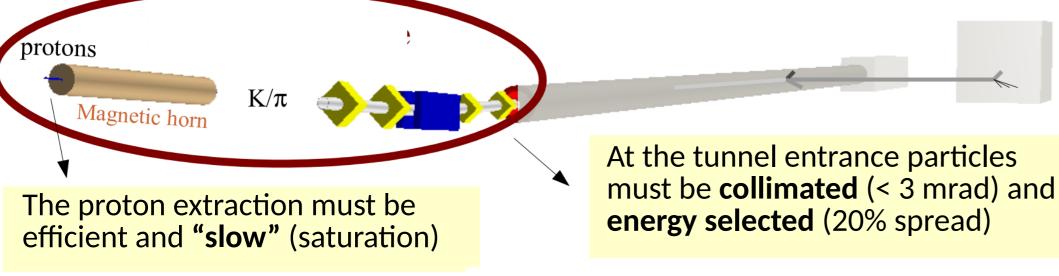
The positron tagger

The decay tunnel: a harsh environment

- particle rates: > 200 kHz/cm²
- backgrounds: pions from K⁺ decays


Need to veto 98-99 % of them

- extended source of ~ 50 m
- grazing incidence
- significant spread in the initial direction


Conventional beam-pipe replaced by active instrumentation →

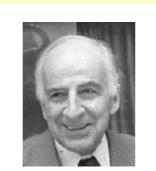
Key point:

- longitudinal sampling
- perfect homogeneity
- → integrated light-readout

The hadron beamline

Focusing system

Proton extraction from accelerator


→ an unprecedented

challenge

Unconventional: many (10⁸), short (2 ms) A: pulsed device (magnetic horn) pulses with few protons (< 3 x 10¹¹)

B: static devices (DC magnets) O(1s) long slow extractions

Scenario B is the way to a "time-tagged" v beam proton "time-dilution" \rightarrow t-coincidences between e⁺ and v

Bruno Pontecorvo

1) Calorimeter ("shashlik") $\rightarrow \pi^{\pm}$ rejection

Ultra-Compact Module (UCM)

2) Integrated γ -veto $\rightarrow \pi^0$ rejection

- plastic scintillators or
- large-area fast avalanche photodiodes

A rich program of detector R&D activities of general interest for particle physics

ENUBET final results:

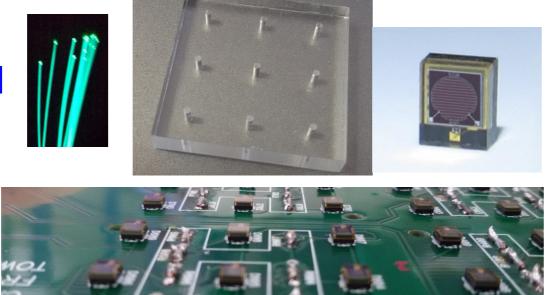
- 1) e⁺ tagger validated with particle beams data
- 2) a detailed design for the **hadron beam-line**

The complete picture to move to a full scale experiment

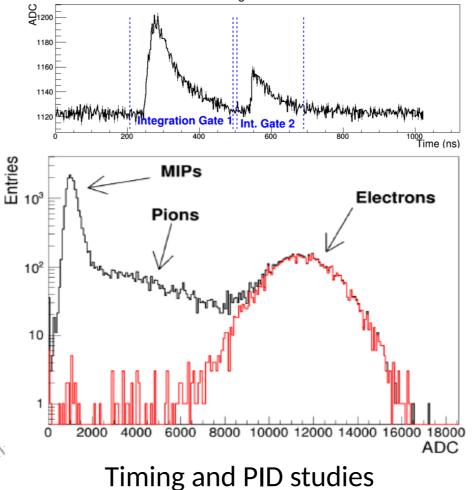
By-products and cross-fertilization:

• calorimetry → new low-cost, ultra-compact detectors

• accelerator physics solutions → novel proton extraction schemes for fixedtarget and beam-dump experiments


Prototype dimensions: $3 \text{ m} \times \pi$ 60 cm outer radius

Tagger detector R&D:


Shashlik Calorimeters for Electron Neutrino Tagging and Tracing

Prototype of the Ultra-Compact shashlik calorimeter. CERN East Area, T9 beamline (29/06/2016)

SiPM array coupled directly to WLS fibers

References, additional info

http://enubet.pd.infn.it

[1] Eur. Phys. J. C (2015) 75:155

A novel technique for the measurement of the electron neutrino cross section

A. Longhin¹, L. Ludovici², F. Terranova^{3,a}

[2] N.I.M. A, 2016.05.123 arXiv:1605:09630

A compact light readout system for longitudinally segmented shashlik calorimeters

A. Berra^{a,b,*}, C. Brizzolari^{a,b}, S. Cecchini^c, F. Cindolo^c, C. Jollet^d, A. Longhin^e, L. Ludovici^f, G. Mandrioli^c, N. Mauri^c, A. Meregaglia^d, A. Paoloni^e, L. Pasqualini^{c,g}, L. Patrizii^c, M. Pozzato^c, F. Pupilli^e, M. Prest^{a,b}, G. Sirri^c, F. Terranova^{b,h}, E. Vallazzaⁱ, L. Votano^e