

High precision neutrino flux measurements with ENUBET

M. Pozzato (INFN-Bologna) on behalf of ENUBET collaboration - P2.040

protons

A new-concept v_e source based on tagging of e⁺ from K⁺ \rightarrow e⁺ π^0 v_e decays

The goal of the project is to demonstrate the **feasibility of real time monitoring of the positrons** produced at high angle in the decay tunnel of conventional neutrino beam to obtain a x 10 reduction in the systematics on the neutrino flux \rightarrow Highly beneficial for the leptonic CP **violation** international program at long baselines $(v_{\mu} \rightarrow v_{\rho})$.

ENUBET (Enhanced NeUtrino BEams from kaon Tagging) is a ERC Consolidator Grant-2015 project (n° 681647, P.I. A. Longhin) with a 2 MEUR funding started on 1/6/2016 w. a 5 years duration.

Traditional beam

- **Passive** decay region
- v_e flux relies on **ab-initio** simulations of the full chain

• large uncertainties from model dependency

Tagged beam

- Fully instrumented decay region $K^+ \rightarrow e^+ v_e \pi^0 \rightarrow \text{large angle } e^+$
- v_e flux prediction = e⁺ counting

- Hadron beam-line: collects, focuses, transports K⁺ to the e⁺ tagger
- e⁺ tagger: real-time, "inclusive" monitoring of produced e⁺

The positron tagger

The decay tunnel: a **harsh environment**

- particle rates: > 200 kHz/cm²
- **backgrounds:** pions from K⁺ decays

Need to veto 98-99 % of them

- extended source of ~ 50 m
- grazing incidence
- significant spread in the initial direction

Conventional beam-pipe filled by active instrumentation →

Hadron beam-line

Key points:

- longitudinal sampling
- perfect homogeneity
- \rightarrow integrated light-readout

1) compact calorimeter with longitudinal segmentation

K⁺ decav

- **1)** Calorimeter ("shashlik") $\rightarrow \pi^+$ rejection Ultra-Compact Module (UCM)
- **2)** Integrated γ -veto $\rightarrow \pi^0$ rejection
- plastic scintillators or
- large-area fast avalanche photodiodes -

ENUBET expected results:

1) e⁺ tagger validated with particle beams data 2) a detailed design for the hadron beam-line

 \rightarrow move to a full scale experiment

A rich program of

detector **R&D** activities

of general interest for

particle physics

Prototype dimensions: 3 m x 60 cm outer radius π coverage

Signal

Scenario B is the way to a "time-tagged" v beam proton "time-dilution" \rightarrow t-coincidences between e⁺ and v_a

Bruno Pontecorvo

By-products:

• **calorimetry** → new low-cost, ultra-compact detectors

Time (ns)

ADC

• accelerator physics solutions → novel proton extraction schemes for fixed-target and beam-dump experiments

Tagger detector R&D: SCENTT INFN-CSN5 activity (PI F. Terranova) [2] Shashlik Calorimeters for Electron Neutrino Tagging and Tracing

Shashlik calorimeter prototype

CERN East Area, T9 beamline (29/06/2016)

References, additional info

http://enubet.pd.infn.it

[1] Eur. Phys. J. C (2015) 75:155

A novel technique for the measurement of the electron neutrino cross section

A. Longhin¹, L. Ludovici², F. Terranova^{3,a}

[2] N.I.M. A, 2016.05.123 arXiv:1605:09630

A compact light readout system for longitudinally segmented shashlik calorimeters

A. Berra^{a,b,*}, C. Brizzolari^{a,b}, S. Cecchini^c, F. Cindolo^c, C. Jollet^d, A. Longhin^e, L. Ludovici^f, G. Mandrioli^c, N. Mauri^c, A. Meregaglia^d, A. Paoloni^e, L. Pasqualini^{c,g}, L. Patrizii^c, M. Pozzato^c, F. Pupilli^e, M. Prest^{a,b}, G. Sirri^c, F. Terranova^{b,h}, E. Vallazzaⁱ, L. Votano^e