





This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

# The Demonstrator of the instrumented decay tunnel for the ENUBET monitored neutrino beam

A.Falcone (on behalf of the ENUBET Collaboration) University of Milano-Bicocca & INFN



# > control of source-detector distance.

**Overview** 

#### Disadvantages

> Contaminations of  $v_e$  poorly know;

control of neutrino energy;

Advantages Unlike other neutrino sources:

energy reconstruction based on products at the detector;

Particle accelerators are used to generate a controlled muon neutrino flux.

> overall flux uncertainty of ~ O(10%)

$$N_{\nu_e} = P_{\nu_e \to \nu_{\mu}} \sigma_{\nu_e} \phi_{\nu_{\mu}}$$

Possible approach: monitored neutrino beams



## **ENuBET project**



ENUBET is the project for the realization of the first monitored neutrino beam, by developing a new beam in which the flux and flavor composition are known at 1% level, and the energy with O(10%) precision.

- > ENUBET: ERC Consolidator Grant, June 2016 May 2021 (COVID: extended to end 2022). PI: A. Longhin;
- Since April 2019: CERN Neutrino Platform Experiment NP06/ENUBET- and part of Physics Beyond Colliders (PBS);
- Collaboration: 60 physicists & 13 institutions;
- Spokespersons: A. Longhin, F. Terranova; Technical Coordinator: V. Mascagna.





Present collaboration: 65 phys, 13 institutions

# **ENuBET: the first monitor neutrino beam**





ERC project focused on:

measure positrons (instrumented decay tunnel) from  $K_{e3} \Rightarrow$  determination of  $\nu_e$  flux.

#### > As CERN NP06 project:

extend measure to muons (instrumented decay tunnel) from  $K_{\mu\nu}$  and (replacing hadron dump with range meter)  $\pi_{\mu\nu} \Rightarrow$  determination of  $\nu_{\mu}$  flux.

Andrea Falcone - Milano - IEEE NSS-MIC-RTSD 2022

## **ENuBET** beamline





#### optics optimization w/ TRANSPORT (5% momentum bite centered @ 8.5 GeV) G4Beamline for particle transport and interactions;

- > FLUKA for irradiation studies, absorbers and rock volumes included in simulation (not shown above);
- > optimized graphite target 70 cm long & 3 cm radius (dedicated studies, scan geometry and different materials);
- tungsten foil downstream target to suppress positron background;
- tungsten alloy absorber @ tagger entrance to suppress backgrounds. Dumps:
- Proton dump: three cylindrical layers (graphite core -> aluminum layer -> iron layer);
- Hadron dump: same structure of the proton dump -> allows to reduce backscattering in tunnel.

# $\underline{\nu}_{\mu} \stackrel{\text{CC}}{=} \text{energy distribution at the detector}$



A total  $v_{\rm e}^{\rm CC}$  statistics of 10<sup>4</sup> events in ~3 years

- $\geq$  @ SPS with 4.5 x 10<sup>19</sup> POT/year;
- > 500 ton detector @ 50 m from tunnel end.

#### Taggable component

About 80% of total  $\nu_{\rm e}$  flux is produced by decays in the tunnel (above 1 GeV).

#### Non taggable component

Below 1 GeV: main component produced in p-dump

- clear separation from taggable ones (energy cut);
- further improvements in separation optimizing p-dump position.

Above 1 GeV: contributions from straight section
before tagger and hadron-dump
➤ rely on simulation for this component.



# $\underline{v}_{\mu}$ $\underline{^{CC}}$ energy distribution at the detector



E<sup>cc</sup> (GeV

Narrow-band off-axis Technique Narrow momentum beam O(5-10%)  $(E_v, R)$  are strongly correlated  $E_v$  = neutrino energy;

R = radial distance of interaction vertex from beam axis. Precise determination of  $E_{\nu}$ : no need to rely on final state particles from  $\nu_{\mu}^{CC}$  interaction;

- > 8-25%  $E_{\nu}$  resolution from  $\pi$  in DUNE energy range (1.5-5 GeV);
- > 30%  $E_v$  resolution from  $\pi$  in HyperK energy range (<1.2 GeV);
- ongoing R&D: Multi-Momentum Beamline (4.5, 6 and 8.5 GeV)
- => HyperK & DUNE optimized.

F. Acerbi et al., CERN-SPSC-2018-034



ENUBET @ SPS, 400 GeV, 4.5e19 pot, 500 ton detector



# **Decay tunnel instrumentation**

#### Shielding

- > 30 cm of borated polyethylene;
- SiPMs installed on top -> factor 18 reduction in neutron fluence.

#### Calorimeter with $e/\pi/\mu$ separation capabilities:

- sampling calorimeter: sandwich of plastic scintillators and iron absorbers;
- three radial layers of LCM / longitudinal segmentation;
- > WLS-fibers/SiPMs for light collection/readout.

#### Photon-Veto allows $\pi^+$ rejection and timing:

- plastic scintillator tiles arranged in doublets forming inner rings;
- $\succ$  time resolution of ~400 ps.

10/11/2022

LCM: Lateral Compact Module 5 x Lead+Scint - 3x3x10 cm<sup>3</sup> - 4.3 X<sub>0</sub>







Andrea Falcone - Milano - IEEE NSS-MIC-RTSD 2022

# Lepton reconstruction and identification performance



#### Full GEANT4 simulation of the detector:

- validated by prototype tests at CERN in 2016-2018;
- hit-level detector response;
- pile-up effects included (waveform treatment in progress);
- vent building and PID algorithms (2016-2020).
- Large angle positrons and muons from kaon decays reconstructed searching for patterns in energy depositions in tagger.
- Signal identification done using a Neural Network trained on a set of discriminating variables.
- K<sub>e3</sub> (BR ~5%) and K make ~5 10% of the beam composition.

F. Pupilli et al., PoS NEUTEL2017 (2018), 078







# v flux: assessment of systematics



Monitored v-flux from narrow-band beam: measure rate of leptons ⇔ monitor v-flux

- build a Signal + Background model to fit lepton observables;
- > include hadro-production (HP) & transfer line (TL) systematics as nuisances.



Used hadro-production data from NA56/SPY experiment to:

- > Reweight MC lepton templates and get their nominal distribution;
- > Compute lepton templates variations using multi-universe method.

## v flux: impact on hadro production systematics





## **Prototypes and tests**

Tested during 2018 test beams runs @ CERN-PS: Prototype of sampling calorimeter built out of LCM with lateral WLS-fibers for light collection



Large SiPM area (4x4 mm2) for 10 WLS readout (1 LCM)



SiPMs installed outside of calorimeter, above shielding: avoid hadronic shower and reduce (factor 18) aging



#### 1/2 mip separation



F. Acerbi et al., JINST (2020), 15(8), P08001

#### Status of calorimeter:

- longitudinally segmented calorimeter prototype successfully tested;
- photon veto successfully tested.

Choise of technology: finalized and costeffective!

## **Prototypes and tests - Enubino**



Enubino

Borated polyethylene

SiPMs

#### 2021 test beam @ CERN-PS:

- Sampling calorimeter: plastic scintillator + iron absorber + BPE.
- Fibers collect the scintillation light frontally
- > Uniform light collection.
- Fiber routing through BPE to SIPMs.

New frontal readout scheme & fibers bundling, again with 1 LCM bundled to a 4x4 mm<sup>2</sup> SiPM.





LCM

LCM

LCM





**t0** 

**+**0

Scintill

Iron

LCY





10/11/2022

## The tagger demonstrator

- Detector prototype to demonstrate performance / scalability / cost-effectiveness:
- 1.65 m longitudinal & 90° in azimuth;
- 75 layers of: iron (1.5 mm thick) + scintillator (7 mm thick) => 12x3 LCMs.
- Central 45° part instrumented: rest is kept for mechanical considerations;
- Modular design: can be extended to a full 2π object by joining 4 similar detectors (minimal dead regions);
- New light readout scheme with frontal grooves instead of lateral grooves:
- driven by large scale scintillator manufacturing: safer production and more uniform light collection;
- o performed GEANT4 optical simulation validation.
- Scintillators: produced by SCONIX and milled by local company.



10/11/2022

## The tagger demonstrator: mechanical stracture











10/11/2022

Andrea Falcone - Milano - IEEE NSS-MIC-RTSD 2022

## The tagger demonstrator: scintillator tiles











**Fiber gluing** (EJ-510 TiO<sub>2</sub> reflecting painting) (EJ-500 optical cement)

Tile assembling on arcs and fiber routing



10/11/2022

**Tile painting** 

## The tagger demonstrator: fiber routing



#### Fiber concentrators for bundling and routing to SiPMs



Produced with 5 consumer level 3D printers







## The tagger demonstrator: electronics





#### **Front-End Board** (SiPMs + Low V)



# **Custom + Commercial electronics** 00



**Custom interface board** to connect 5 FEB (60 ch) to 1 A5202 (64 ch)





## The tagger demonstrator at CERN



- Scintillator tiles: 1360
- ➢ WLS: ∼ 1.5 km
- Channels (SiPM): 400
- o Hamamatsu 50 um cell
- 240 SiPM 4x4 mm2 (calo)
- 160 SiPM 3x3 mm2 (t0)
- Fiber concentrators, FE boards: 80
- Interface boards (hirose conn.): 8
- Readout 64 ch boards (CAEN A5202): 8
- Commercial digitizers: 45 ch
- Hor. movement ~1m
- Filt >200 mrad

Instrumented fraction can be extended (> x2) in the future with already available materials (with more time for an exposure next year).



### **ENUBET at CERN PS-T9 area**



#### October 2022 CERN-PS-T9



## **ENUBET at CERN PS-T9 area**



#### horizontal run with darkening cover







Beam spot at the detector upstream face after several runs illuminating different regions of the detector





10/11/2022

#### Andrea Falcone - Milano - IEEE NSS-MIC-RTSD 2022

# **Event display**















**Calorimeter** layer

NB: channels not yet equalized with mips.

# **Conclusions and outlooks**



- ERC project started in 2016
- CERN experiment (NP06) within Neutrino-Platform in 2019
- > part of Physics Beyond Collider framework

#### Final design of beam transfer line in place, fine-tunning parameters:

- $\succ$  static transfer line: 104 events in ~3 years (@ SPS)
- > ongoing optimization of transfer line parameters w/ dedicated framework
- multi-momentum beamline ongoing R&D: DUNE & HyperK optimize

#### Design of decay tunnel instrumentation finalized:

- $\succ$  prototypes test-beams @ CERN: technology validation;
- Final demonstrator tested @ PS East Hall in October 2022 -> results coming soon!

#### Detector simulation and PID studies done:

- developed full GEANT4 simulation of calorimeter
- finalizing waveform to fully assess the pile-up effects
- very good PID performance achieved (both positron and muon reconstruction)

#### Systematics, hadroproduction and next steps:

- achieved 1% systematic goal due to hadroproduction with lepton monitoring
- > assess systematics due to detector effects and beamline parameters 10/11/2022 Andrea Falcone - Milano - IEEE NSS-MIC-RTSD 2022