

NP06/ENUBET 60 physicists, 12 institutions

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement N. 681647)

The ENUBET experiment

Claudia Caterina Delogu, University of Padova & INFN, on behalf of the ENUBET Collaboration

NP06/ENUBET Enhanced NeUtrino BEams from kaon Tagging

Future neutrino physics will require measurements of absolute neutrino cross sections at the GeV scale with 1% precision

Leading source of uncertainty in cross-section measurement: neutrino flux

 \rightarrow dominated by the uncertainty on the simulation of the beamline and the hadro production data

Measure the number of leptons that are produced in a decay tunnel: one-to-one relationship between the lepton that you produce and the neutrino.

2

ENUBET

Design optimized to reach a 1% systematic error on measurement of the flux and of the cross-sections of the electron neutrino

Two main steps:

- layout of the π/K focusing and transport system with suitable proton extraction schemes
- special instrumented beamline capable of performing positron monitoring from decays of K in a v beam decay tunnel at single particle level

Requirements:

- Use of conventional magnet field and apertures (normal-conducting, aperture < 40cm)
- Keep under control level of background transported to the tunnel
- Small beam size: non decaying particles should exit the decay pipe without hitting the walls
- Maximize number of K⁺ at tunnel entrance
- Minimize total length of the transferline (~20 m) to reduce kaon decay losses

Focusing system: a quadrupole triplet before the bending magnet Reference momentum 8.5 GeV, 10% momentum bite One quadrupole triplet, two bending dipoles (14.8° bending) tagger

from target

hadron dump → µ detector

p dump

Requirements:

 $K^+ \rightarrow \pi^0 e^+ v_a$

hadron dump

detector at 100 m from target

5

- Use of conventional magnet field and apertures (normal-conducting, aperture < 40cm) •
- Keep under control level of background transported to the tunnel
- Small beam size: non decaying particles should exit the decay pipe without hitting the walls •
- Minimize total length of the transferline (~20 m) to reduce to hadron

tagged One quadrupole triplet, two bending dipoles (14.8° bending) tagger

Requirements:

- Use of conventional magnet field and apertures (normal-conducting, aperture < 40cm) •
- Keep under control level of background transported to the tunnel
- Small beam size: non decaying particles should exit the decay pipe without hitting the walls •
- Maximize number of K⁺ at tunnel entrance

Focusing system: a quadrupole trip Reference momentum 8.5 GeV, 10% ooles (14.8° bendina) _{tagger} One quadrupole triplet, two bending

at 100 from target

hadron dump

Requirements:

- Use of conventional magnet field and apertures (normal-conducting, aperture < 40cm)
- Keep under control level of background transported to the tunnel
- Small beam size: non decaying particles should exit the decay pipe without hitting the walls
- Maximize number of K⁺ at tunnel entrance
- Minimize total length of the transferline (~20 m) to reduce kaon decay losses

Requirements:

- $\mathsf{K}^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle 0} \; e^{\scriptscriptstyle +} \, \mathsf{v}_{_{e}}$
- Use of conventional magnet field and apertures (normal-conducting, aperture < 40cm)
- Keep under control level of background transported to the tunnel
- Small beam size: non decaying particles should exit the decay pipe without hitting the walls
- Maximize number of K⁺ at tunnel entrance
- Minimize total length of the transferline (~20 m) to reduce kaon decay losses

Focusing system: a quadrupole triplet before the bending magnet Reference momentum 8.5 GeV, 10% momentum bite One quadrupole triplet, two bending dipoles (14.8° bending) tagger

p dump

hadron dump → µ detector

from target

Improved shielding - W foil: dumps low energy ENUBET beamline e⁺ entering tunnel Larger bending angle w.r.t. W foil Improved shielding - W plug: dumps low original proposal energy particles hitting the tagger, (single dipole beamline) backgrounds reduced by large factors quad increased length triplet 1st better collimated beam dipole reduced backgrounds 2nd dipole W plug Optics: optimized with TRANSPORT • tagger Particle transport and interaction: full simulation with G4Beomline FLUKA: doses and n shielding, target (Be, graphite)

• In progress: GEANT4 (systematics)

Horn-based beamline - "burst slow extraction"

Magnetic horn placed between the target and the quadrupoles, pulsed with large currents (2-10 ms pulse, 180 kA at 10 Hz)

"Burst slow extraction": small bursts of 10 ms, repeated with a frequency of 10Hz during the flat top of the accelerator.

Tested at the SPS at CERN in 2018: 20 ms achieved

Today:

- Simulation \rightarrow 2-10 ms
 - \rightarrow to be tested after LS2 (2022)
- Reoptimization of the horn geometry: conductor and currents

Static focusing option: single resonant slow extraction \rightarrow less challenging (no need synchronise proton extraction with current pulsing)

10

Particle yields

The horn-based option allows ~ x5 faster statistics, but the static transferline offers several advantages

- No need for fast-cycling horn
- Strong reduction of the rate (pile-up) in the instrumented decay tunnel
- Monitor μ after the dump at % level (flux of $v_{_{\rm H}}$ from $\pi)$

Initial estimates were ~ x4 too conservative wrt present simulations

 \rightarrow configuration still under optimization

Focusing system	π/pot (10 ⁻³)	K/pot (10⁻³)	Extraction length	π/cycle (1010)	K/cycle (1010)	Proposal (*)
Horn	97	7.9	2 ms	438	36	× 2
Static	19	1.4	2 s	85	6.2	× 4

To be updated with the new beamline

(*) A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155

Instrumented decay tunnel

Colorimeter

Photon veto

 \rightarrow Longitudinal segmentation (three radial layers, plastic scintillator + iron absorber) $\rightarrow e^{\dagger}/\pi^{\dagger}/\mu$ separation

Light readout system SiPMs on top of the calorimeter, above a borated polyethylene shield

Lateral light readout system: WLS fibers running along the edges of the tiles \rightarrow reduced (x18) neutron damage the SiPMs

 $\rightarrow \pi^0$ rejection

September 2018 @ CERN-PS: response to MIP, e and π tested for a calorimeter prototype and an integrated t_0 -layer.

ang

88 mrac

Instrumented decay tunnel

Calorimeter

 → Longitudinal segmentation (three radial layers, plastic scintillator + iron absorber)
→ e⁺/π⁺/µ separation

Scintillator

Light readout system SiPMs on top of the calorimeter, above a borated polyethylene shield

Lateral light readout system: WLS fibers running along the edges of the tiles \rightarrow reduced (x18) neutron damage the SiPMs

F. Acerbi et al, JINST 15 (2020) P08001

September 2018 (CERN-PS: response to MIP, e and π tested for a calorimeter prototype and an integrated t_-layer

Testbeam results

F. Acerbi et al, JINST 15 (2020) P08001

50 60

10⁻¹

14

70 80 90 100 tile₂ [n p.e.]

Positron reconstruction

Full GEANT4 simulation of the detector, validated by prototype tests at CERN during 2016-2018.

- particle propagation and decay from transfer line to detector
- hit level detector response
- pile-up effects included

Analysis chain:

- Event builder → identify the seed of the event (LCM with largest energy deposit in inner layer and of E>28 MeV). Cluster neighbour LCM deposits compatible with propagation of shower
- e/π/μ separation → multivariate analysis exploiting 19 variables (energy pattern deposition in calorimeter, event topology, and photon-veto energy deposition)
- e/γ separation \rightarrow signal on the tiles of the photon veto (0-1-2 mip)

S/N = 2.1

Efficiency: 24% (dominated by geometrical efficiency)

Flux components

Assumption: 500 t neutrino detector located 50 m from the hadron dump

 \rightarrow 10⁴ fully reconstructed v CC in about 1.5 y of data taking

Events:

- 80% directly monitored (positrons in the decay tunnel)
- 10% from decay in the transfer line (straight section in front of the tagger, pointing to the detector)

 \rightarrow removable with simulation

- 10% low energy events from arly decays of kaons
 - \rightarrow removable with energy cut.

Muon neutrinos (in progress)

High-Energy: $K^* \rightarrow \mu^* v_{\mu}, K^* \rightarrow \pi^0 \mu^* v_{\mu}$ \rightarrow constrained by the taggerLow-Energy: $\pi^* \rightarrow \mu^* v_{\mu}$ \rightarrow constrained by detectors following the hadron dump

- $\begin{array}{ll} \mathsf{K}^{\star} \rightarrow \mu^{\star} \, \mathsf{v}_{\mu} & \qquad & \text{Efficiency} = 35\% \quad \text{S/N} = 6.1 \\ \\ \mathsf{K}^{\star} \rightarrow \pi^{0} \, \mu^{\star} \, \mathsf{v}_{\mu} & \qquad & \text{Efficiency} = 21\% \quad \text{S/N} = 6.1 \end{array}$
- Event builder → identify seed of the event (inner layer LCM withm E = 5-15 MeV). Cluster all LCM deposits compatible with muon-track topology and propagation
- µ-like background separation → multivariate analysis exploiting 13 variables (energy deposition, track isolation and topology)

$\pi^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle +} \, v_{_{\mu}}$

Muon stations after hadron dump: pions have a large forward boost, muons from decays exit the tunnel.

Estimation of muon and neutron rates in progress \rightarrow choice of detector technology

The ENUBET demonstrator

- Length ~ 3m
- Fraction of Φ

Due by 2021, it will allow the containment of shallow angle particles in realistic conditions

Validation: East Area beamline at CERN

t₀-layers (photon veto) 3 calorimetric layers shielding

Ele 6r

Conclusions & next steps

2016 \rightarrow today:

- Simulation of the beamline
- Tested the "burst" slow extraction scheme at the CERN-SPS
- + Feasibility of a purely static focusing system (106 $v_{\mu}^{\ \ CC}$, 104 $v_{e}^{\ \ CC}$ /y/500 t)
- Positron reconstruction: single particle level monitoring
- Testbeams campaign before LS2

Reduction of the uncertainty in the flux

- \rightarrow New generation of short-baseline experiments
- \rightarrow Support from the European Strategy

Conclusions & next steps

