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Future neutrino physics will require measurements of absolute neutrino cross sections at the GeV scale with 
1% precision

Leading source of uncertainty in cross-section measurement: neutrino flux

→ dominated by the uncertainty on the simulation of the beamline and the hadro production data

Measure the number of leptons that are produced in a decay tunnel: one-to-one relationship between the 
lepton that you produce and the neutrino.
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A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155



ENUBET
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Design optimized to reach a 1% systematic error on measurement of the flux and of the cross-sections of 
the electron neutrino

Two main steps:  
● layout of the π/K focusing and transport system with suitable proton extraction schemes
● special instrumented beamline capable of performing positron monitoring from decays of K in a ν beam 

decay tunnel at single particle level  

Muon monitoring
π+ → μ+ ν

μ

Positrons from: K+ → π0 e+ ν
e

Muons from: K+ → μ+ ν
μ
, K+ → π0 μ+ ν

μ



ENUBET beamline
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Requirements:
● Use of conventional magnet field and apertures (normal-conducting, aperture < 40cm)
● Keep under control level of background transported to the tunnel
● Small beam size: non decaying particles should exit the decay pipe without hitting the walls
● Maximize number of K+ at tunnel entrance
● Minimize total length of the transferline (~20 m) to reduce kaon decay losses

Focusing system: a quadrupole triplet before the bending magnet

Reference momentum 8.5 GeV, 10% momentum bite
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Larger bending angle w.r.t. 
original proposal 
(single dipole beamline)
● increased length
● better collimated beam 
● reduced backgrounds 

● Optics: optimized with TRANSPORT
● Particle transport and interaction: full simulation 

with G4Beamline
● FLUKA: doses and n shielding, target (Be, graphite)
● In progress: GEANT4 (systematics)

tagger

quad
triplet

W plug

1st 
dipole

2nd 
dipole

W foil Improved shielding - W plug: dumps low 
energy particles hitting the tagger, 
backgrounds reduced by large factors

Improved shielding - W foil: dumps low energy 
e+ entering tunnel



Horn-based beamline - “burst slow extraction”
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Magnetic horn placed between the target and the 
quadrupoles, pulsed with large currents (2-10 ms pulse, 180 
kA at 10 Hz)

“Burst slow extraction”: small bursts of 10 ms, repeated with 
a frequency of 10Hz during the flat top of the accelerator. 

Tested at the SPS at CERN in 2018: 20 ms achieved

Today: 
 Simulation → 2-10 ms

→ to be tested after LS2 (2022)
 Reoptimization of the horn geometry: conductor and 

currents

Static focusing option: single resonant slow extraction → less challenging (no need synchronise proton 
extraction with current pulsing)

CERN-BE-OP-SPS, F.Velotti, M.Pari, V.Kain, B.Goddard



Particle yields
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The horn-based option allows ~ x5 faster statistics, but the static 
transferline offers several advantages
● No need for fast-cycling horn
● Strong reduction of the rate (pile-up) in the instrumented 

decay tunnel

● Monitor μ after the dump at % level (flux of νμ from π)

Initial estimates were ~ x4 too conservative wrt present 
simulations
→  configuration still under optimization

Focusing 
system

π/pot
(10-3)

K/pot
(10-3)

Extraction 
length

π/cycle
(1010)

K/cycle
(1010)

Proposal (*)

Horn 97 7.9 2 ms 438 36 x 2

Static 19 1.4 2 s 85 6.2 x 4

(*) A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155

Low energy 
high angle π

To be updated with the new beamline

Spectra 
@ tagger 
entrance 
/ exit

Loss driven
by decays

Static beamline



Instrumented decay tunnel

Calorimeter → Longitudinal segmentation (three radial 
    layers, plastic scintillator + iron absorber)
→ e+/π+/μ separation

Light readout system SiPMs on top of the calorimeter, above 
a borated polyethylene shield

Lateral  light readout system: WLS fibers running along the 
edges of the tiles → reduced (x18) neutron damage the SiPMs

Photon veto Plastic scintillator tiles arranged in 
doublets forming inner rings
→ π0 rejection

September 2018 @ CERN-PS: 
response to MIP, e and π tested 
for a calorimeter prototype 
and an integrated t

0
-layer.

t0-layer

LCM 
3x3x10 cm3

K+

e+

ν
e

π0

e+

π0

π+

Event
topology:

ENUBET e+ mean 
angle: 88 mrad
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F. Acerbi et al, JINST 15 (2020) P08001

Photon veto 
working principle



Instrumented decay tunnel
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F. Acerbi et al, JINST 15 (2020) P08001
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t0-layer

Testbeam results
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F. Acerbi et al, JINST 15 (2020) P08001

September 2018 @ CERN-PS: 
response to MIP, e and π tested 

for a calorimeter prototype and 
an integrated t

0
-layer

Energy resolution
π energy vs shower 

depth (planes) 1mip/2mip separation  

Module 3

LCM

Modules 1 and 2

SiPMs
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● particle propagation and decay from transfer line to detector
● hit level detector response
● pile-up effects included

Analysis chain: 
● Event builder → identify the seed of the event (LCM with largest energy 

deposit in inner layer and of E>28 MeV). Cluster neighbour LCM 
deposits compatible with propagation of shower

● e/π/μ separation → multivariate analysis exploiting 19 variables (energy 
pattern deposition in calorimeter, event topology, and photon-veto 
energy deposition)

● e/γ separation → signal on the tiles of the photon veto (0-1-2 mip)

S/N = 2.1

Efficiency: 24% (dominated by geometrical efficiency)

Positron reconstruction

e+ candidate visible 
energy (MeV)

Full GEANT4 simulation of the detector, validated by prototype tests at CERN during 2016-2018.



Flux components
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Assumption: 500 t neutrino detector located 50 m from the 
hadron dump

→ 104 fully reconstructed ν
e 
CC in about 1.5 y of data taking 

Events:
● 80% directly monitored (positrons in the decay tunnel)
● 10% from decay in the transfer line (straight section in 

front of the tagger, pointing to the detector)

→ removable with simulation
● 10% low energy events from arly decays of kaons

→ removable with energy cut.

to

dete
ctor



Muon neutrinos (in progress) 

17

High-Energy: K+ → μ+ ν
μ
, K+ → π0 μ+ ν

μ
→ constrained by the tagger

Low-Energy: π+ → μ+ ν
μ

→ constrained by detctors following the hadron dump

tagger

K+ → μ+ ν
μ
 Efficiency = 35% S/N = 6.1

K+ → π0 μ+ ν
μ
 Efficiency = 21% S/N = 6.1

● Event builder → identify seed of the event (inner layer LCM 
withm E = 5-15 MeV).  Cluster  all  LCM  deposits  compatible  
with  muon-track topology and propagation

● μ-like background separation → multivariate analysis 
exploiting 13 variables (energy deposition, track isolation and 
topology)

π+ → μ+ ν
μ

Muon  stations  after  hadron  dump:  pions  have  a  large  
forward boost, muons from decays exit the tunnel.

Estimation of muon and neutron rates in progress → choice of 
detector technology

Absorber
μ-station
(detector)



The ENUBET demonstrator
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t
0
-layers (photon veto)

3 calorimetric layers
shielding

● Length ~ 3m
● Fraction of Φ

Due by 2021, it will allow the containment of shallow angle 
particles in realistic conditions

Validation: East Area beamline at CERN 

WLS fibers

Charged particle beam



Conclusions & next steps
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2016 → today:

 Simulation of the beamline

 Tested the “burst” slow extraction scheme at the CERN-SPS 

 Feasibility of a purely static focusing system (106 νμ
CC , 104 νe

CC /y/500 t)

 Positron reconstruction: single particle level monitoring

 Testbeams campaign before LS2

Reduction of the uncertainty in the flux

→ New generation of short-baseline experiments 

→ Support from the European Strategy



Conclusions & next steps
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2020 ✔ 

✔ The design phase is over 
✔ The simulations are 

nearly completed 

Work in 
progress

✔ Horn optimization
✔ Update of flux and spectra 

with the final beamline
✔ Establish the final systematic budget

2021

✔ Construction of the 
demonstrator

✔  Full assessment of systematics

2022

✔ Test of the demonstrator



Thank you!

http://enubet.pd.infn.it/

http://enubet.pd.infn.it/

