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Enhanced NeUtrino BEams from kaon Tagging

60 physicist, 12 institutions
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A monitored neutrino beam

The goal of ENUBET is to demonstrate the technical feasibility and physics  
performance of a neutrino beam where lepton production at large angles is 
monitored at single particle level. 

Based on conventional technologies, aiming for a 1% precision on the νe flux
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The ENUBET beamline
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Design/simulate the layout of 
the hadronic beamline 

Build/test a demonstrator of the 
instrumented decay tunnel 

Target 
(Be, graphite. FLUKA)

Proton driver 
CERN (400 GeV)
FNAL (120 GeV)
J-PARC (30 GeV)

Transfer Line
Horn vs Static focusing under study (tested at the CERN SPS)
TL kept short, optimized with TRANSPORT to a 10% momentum bit 
centered at 8.5 GeV/c
Particle transport and interaction: full simulation with G4beamline 
and Geant4

Decay tunnel
R = 1 m, L = 50 m Hadron 

dump

~500 T neutrino detector 100m from 
the target.
E.g. :
ICARUS@FNAL, ProtoDUNE@CERN or 
Water Cher @J-PARC
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The positron tagger
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>99.98% Ke3 → <𝜃e+> = 88 mrad 

K+ decay modes

Background: 𝜇+, ⲡ±, ⲡ0 
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The positron tagger
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Sampling calorimeter → Longitudinal segmentation
e+/𝜇+/ⲡ± separation 

Integrated photon veto → scintillator
ⲡ0 rejection 
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The positron tagger UCM 
Ultra Compact Module 
10 cm → 10 X0
Plastic scintillator + iron absorber
Shashlik readout scheme with WLS 
fibers and integrated SiPMs 

SiPM - HD RGB by FBK
1x1 mm2 , 12-15-20 𝜇m cell size

CERN PS, Nov 2016

7x4x2 UCMs
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Test beam results
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Calorimeter prototype performances 
Test-beam data @ CERN-PS T9 line 2016-2017

● Tested response to MIP, e and ⲡ-

● Energy resolution 17%/sqrt(E) (GeV)
● Linearity deviations <3% in 1-5 GeV range

● From 0 to 200 mrad → No significant 
differences

● Work to be done on the fiber-SiPM coupling 
(major source of non uniformities

● Equalizing UCM response  with MIPs (MC/data in 
a good agreement)

● Longitudinal profiles of partially contained ⲡ  
reproduced with MC @ 10% precision

Ballerini et al., JINST 13 (2018) P01028
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The positron tagger - Photon veto
𝛄/e+ discrimination (+ timing)

Tests @ CERN-PS T9 line 2016 - 2018
Scintillator (3x3x0.5 cm3) + WLS fiber (30cm) + SiPM
● Light collection efficiency → > 95%
● Time resolution → σt ~ 400 ps
● 1 mip / 2 mip separation

Charge exchange ⲡ- p → n ⲡ0 (→  𝛄𝛄) 
Trigger: pm1 + veto + pm2

Ⲡ- 
e+

e-

2 mip

1 mip

→  Input for 
simulations
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SiPM irradiation
Expected 5-years neutron 
doses from K decays (FLUKA)

Distance from tunnel axis

SiPM position

Irradiation campaign @INFN-LNL - July 2017
Van de Graaf CN accelerator 
7MV and 5 mA proton current on a Be target
p (5 MeV)+9Be →  n + X
→ 1-3 MeV neutrons with fluences up to 1012/cm2 in ~hours 

p
Be

n

Tested 12,15,20 μm (cell size)  SiPMs 
up to ~ 2 x 1011 1-MeV-eq  n/cm2 

Frontend readout and instrumentation  
outside the bunker
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SiPM irradiation results

F. Acerbi et al., JINST 14 (2019) P02029

● By choosing SiPM cell size and scintillator thickness (~light yield) properly mip signals remain well 
separated from the noise even after typical expected irradiation levels

● Mips can be used for channel-to-channel intercalibration even after maximum irradiation.

A shashlik calorimeter equipped with irradiated 
SiPMs later tested at CERN-PS T9 in Oct 2017
1 cm thick scintillator, 15 μm cell size
1.2 x 1011 1 MeV-eq-n/cm2  

Electronsmip
Dark current vs bias

Increasing 
fluences
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Alternative design: lateral readout
Moving SiPM + frontend 30 cm away from the calorimeter bulk 

● Borated polyethylene shielding

● FLUKA full simulation, 400 GeV protons.

→ Very good suppression especially below 100 MeV.
Factor ~18 reduction averaging over spectrum.

Neutron p (GeV/c)

Pre
lim

in
ary

10 cm

SiPM

30 cm

shield
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Lateral readout prototype
Light collected from scintillator sides and bundled to a single SiPM reading 10 
fibers (1 UCM). 
SiPM are not immersed anymore in the hadronic shower →  less compact but:
● much reduced neutron damage (larger safety margins)
● better accessibility, easier replacement. 
● better reproducibility of the WLS-SiPM optical coupling.

Sampling calorimeter with 
lateral WLS light collection

May 2018, CERN-PS 

Large area (4x4 mm2) SiPM
AdvanSiD ASD-RGB4S-P

10 fibers/SiPM 
bundling
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Test beam results and prototype R&D
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September 2018 CERN-PS: a module with hadronic cal. for pion containment and integrated t0-layer

t0-layers

Geant4 simulation

Particle ID Energy resolution

Efficiency maps

Particle ID

JINST 15 (2020) 08, P08001
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Readout electronics
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Development of custom waveform digitizers
8 ch, 14-bit ADC, 500 MS/s
10 ms spill (horn) → 40 MB/spill/UCM

4 ch ADC board already tested and validated     + 1 digital interface board
4 amplifiers with gain = 4 (ADA4930 OpAmp)
2 x ADS4249 ADCs (14bit, 250 MS/s)

Prototyping

+

Mid-term plan:

● Final 8-channel waveform digitizer board

● VME interface
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2021 - demonstrator construction
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● Length ~ 3 m, fraction of  φ → 4000-5000 channels 
● allows containment of shallow angle particles in realistic conditions
● Due by 2021
● Will be tested at the CERN renovated East Area after Long-Shutdown 2
● Demonstrate physics, scalability and cost effectiveness

Fiber routing 
optimization to 
avoid tile 
staggering
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Conclusions and outlooks
ENUBET is demonstrating that a high precision monitoring of the flux at source O(1%) is feasible. 

The positron tagger prototyping phase has been concluded: 

● test beams campaigns completed before CERN Long Shutdown 2. Particle ID and energy resolution fulfill the 
requirements

● neutron damage of the sensors assessed
● Lateral readout option → ensures a long lifetime and accessibility of the photosensors
● In-house readout electronics (full waveform digitizer, VME interfaces)

Next steps:
● Full assessment of systematics on the neutrino fluxes (simulation)
● Build the demonstrator prototype of the tagger (2021)
● Conceptual Design Report at the end of the project (2021): physics and costing
● >2021: (likely) propose a full scale experiment implementation supported by a larger international collaboration.
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