Development of instrumentation for tagged and monitored neutrino beams

Valerio Mascagna on behalf of the ENUBET Collaboration

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (G.A. n. 681647)
Outline

● The ENUBET project
● Status of the positron tagger
● Overview of the R&D and test beam results
● Conclusions and outlooks
The ENUBET Collaboration

Enhanced NeUtrino BEams from kaon Tagging

60 physicist, 12 institutions

P.I A. Longhin
Padova University, INFN
http://enubet.pd.infn.it/
A monitored neutrino beam

The goal of ENUBET is to demonstrate the technical feasibility and physics performance of a neutrino beam where lepton production at large angles is monitored at single particle level.

Based on conventional technologies, aiming for a 1% precision on the ν_e flux.

The ENUBET beamline

Proton driver
CERN (400 GeV)
FNAL (120 GeV)
J-PARC (30 GeV)

Target
(Be, graphite. **FLUKA**)

Transfer Line
Horn vs Static focusing under study (tested at the **CERN SPS**)
TL kept short, optimized with **TRANSPORT** to a 10% momentum bit centered at 8.5 GeV/c
Particle transport and interaction: full simulation with **G4beamline** and **Geant4**

Design/simulate the layout of the **hadronic beamline**

Transfer Line

~500 T **neutrino detector** 100m from the target.
E.g. :
ICARUS@FNAL, ProtoDUNE@CERN or Water Cher @J-PARC

50 m instrumented decay tunnel

Decay tunnel
R = 1 m, L = 50 m

Build/test a demonstrator of the instrumented decay tunnel
The positron tagger

protons → (K⁺, n²) → K decays → e⁺, νₑ → neutrino detector

K⁺ decay modes

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ⁺νμ</td>
<td>63.55 ± 0.11</td>
</tr>
<tr>
<td>π⁰e⁺νₑ</td>
<td>5.07 ± 0.04</td>
</tr>
<tr>
<td>π⁰μ⁺νμ</td>
<td>3.353 ± 0.034</td>
</tr>
<tr>
<td>π⁺π⁰</td>
<td>20.66 ± 0.08</td>
</tr>
<tr>
<td>π⁺π⁰π⁰</td>
<td>1.761 ± 0.022</td>
</tr>
<tr>
<td>π⁺π⁻π⁰</td>
<td>5.59 ± 0.04</td>
</tr>
</tbody>
</table>

Kₑ₃ → <θₑ⁺> = 88 mrad

Background: μ⁺, π⁺, π⁰
The positron tagger

Sampling **calorimeter** → Longitudinal segmentation
\[e^+ / \mu^+ / \pi^\pm \] separation

Integrated **photon veto** → scintillator
\[\pi^0 \] rejection

- **e^- (signal) topology**
- **\(\pi^0 \) (background) topology**
- **\(\pi^+ \) (background) topology**
The positron tagger UCM

Ultra Compact Module
10 cm → 10 X_0
Plastic scintillator + iron absorber
Shashlik readout scheme with WLS fibers and integrated SiPMs

SiPM - HD RGB by FBK
1x1 mm2, 12-15-20 μm cell size

CERN PS, Nov 2016
7x4x2 UCMs
Test beam results

Calorimeter prototype performances
Test-beam data @ CERN-PS T9 line 2016-2017

- Tested response to MIP, e and π
- Energy resolution $17%/\sqrt{E}$ (GeV)
- Linearity deviations <3% in 1-5 GeV range
- From 0 to 200 mrad → No significant differences
- Work to be done on the fiber-SiPM coupling (major source of non uniformities)
- Equalizing UCM response with MIPs (MC/data in a good agreement)
- Longitudinal profiles of partially contained π reproduced with MC @ 10% precision

Ballerini et al., JINST 13 (2018) P01028
The positron tagger - Photon veto

γ/e^+ discrimination (+ timing)

Tests @ CERN-PS T9 line 2016 - 2018
Scintillator (3x3x0.5 cm3) + WLS fiber (30cm) + SiPM
- Light collection efficiency $\rightarrow > 95\%$
- Time resolution $\rightarrow \sigma_t \sim 400$ ps
- 1 mip / 2 mip separation

Charge exchange $\pi^- p \rightarrow n n^0 (\rightarrow \gamma\gamma)$
Trigger: pm1 + veto + pm2
SiPM irradiation

Expected 5-years neutron doses from K decays (FLUKA)

Irradiation campaign @INFN-LNL - July 2017
Van de Graaf CN accelerator
7MV and 5 mA proton current on a Be target
\(p (5 \text{ MeV}) + ^9\text{Be} \rightarrow n + X \)
\(\rightarrow 1-3 \text{ MeV neutrons} \) with fluences up to \(10^{12}/\text{cm}^2 \) in \(\sim \)hours

Tested 12,15,20 μm (cell size) SiPMs up to \(\sim 2 \times 10^{11} \text{ 1-MeV-eq } n/\text{cm}^2 \)
SiPM irradiation results

- By choosing SiPM cell size and scintillator thickness (~light yield) properly mip signals remain well separated from the noise even after typical expected irradiation levels.
- Mips can be used for channel-to-channel intercalibration even after maximum irradiation.

A shashlik calorimeter equipped with irradiated SiPMs later tested at CERN-PS T9 in Oct 2017:
1 cm thick scintillator, 15 μm cell size
1.2 x 10^{11} 1 MeV-eq-n/cm^2
Alternative design: lateral readout

Moving **SiPM + frontend** 30 cm away from the calorimeter bulk

- Borated polyethylene shielding
- FLUKA full simulation, 400 GeV protons.

→ Very good suppression especially below 100 MeV. Factor ~ 18 reduction averaging over spectrum.
Lateral readout prototype

Light collected from **scintillator sides** and bundled to a **single SiPM** reading 10 fibers (1 UCM).

SiPM are not immersed anymore in the hadronic shower → **less compact** but:
- **much reduced neutron damage** (larger safety margins)
- better **accessibility**, easier replacement.
- better **reproducibility** of the WLS-SiPM optical coupling.

Sampling calorimeter with lateral WLS light collection

May 2018, CERN-PS

Large area (4x4 mm²) SiPM

AdvaniSiD ASD-RGB4S-P
Test beam results and prototype R&D

September 2018 CERN-PS: a module with hadronic cal. for pion containment and integrated t₀-layer

Particle ID

Energy resolution

Efficiency maps

Geant4 simulation
Readout electronics

Development of custom waveform digitizers
8 ch, 14-bit ADC, 500 MS/s
10 ms spill (horn) → 40 MB/spill/UCM

4 ch ADC board already tested and validated
4 amplifiers with gain = 4 (ADA4930 OpAmp)
2 x ADS4249 ADCs (14bit, 250 MS/s)

+ 1 digital interface board

Mid-term plan:
- Final 8-channel waveform digitizer board
- VME interface
2021 - demonstrator construction

- **Length ~ 3 m, fraction of $\varphi \rightarrow 4000$-5000 channels**
- Allows containment of shallow angle particles in **realistic conditions**
- Due by 2021
- Will be tested at the CERN renovated East Area after Long-Shutdown 2
- Demonstrate **physics, scalability** and **cost effectiveness**

Fiber routing optimization to avoid tile staggering
Conclusions and outlooks

ENUBET is demonstrating that a **high precision monitoring** of the flux at source **O(1%)** is feasible.

The **positron tagger** prototyping phase has been concluded:

- test beams campaigns completed before CERN Long Shutdown 2. Particle ID and energy resolution fulfill the requirements
- neutron damage of the sensors assessed
- Lateral readout option → ensures a long lifetime and accessibility of the photosensors
- In-house readout electronics (full waveform digitizer, VME interfaces)

Next steps:

- Full assessment of systematics on the neutrino fluxes (simulation)
- Build the demonstrator prototype of the tagger (2021)
- Conceptual Design Report at the end of the project (2021): physics and costing
- >2021: (likely) propose a full scale experiment implementation supported by a larger international collaboration.