ENUBET
Enhanced NeUtrino BEams from kaon Tagging

G. Brunetti (INFN-PD)
On behalf of the ENUBET Collaboration

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement N. 681647)
High Precision Neutrino Flux Measurements in Conventional Neutrino Beams
The Idea and The Conceptual Design

- Neutrino cross sections have crucial role in the oscillation physics
 \(\nu_\mu \rightarrow \nu_e \) experiments in appearance mode need direct \(\nu_e \) cross section measurements
- Exact knowledge of initial flux is the main limiting factor for neutrino oscillation experiments
 - Flux estimate is an indirect procedure in conventional beams
 - Remarkable progress on neutrino cross-section measurements and hadro-production in targets but still uncertainties are at the order of \(\sim 7\text{-}10\% \)

idea

Monitor the neutrino beam with a direct measurement of neutrino fluxes with conventional technologies by **tagging the \(\text{Ke}_3 \) decays**

Protons \(\rightarrow \) Target \((K^+,\pi^+) \) \(\rightarrow \) \(\text{Ke}_3 \) decays
\(K^+ \rightarrow e^+\pi^0\nu_e \)

- Measure positrons in a FULLY INSTRUMENTED decay region
- \(\nu_e \) flux prediction = \(e^+ \) counting
- "By-pass" uncertainties from POT, hadro-production, beamline efficiency
- **ve flux prediction = e+ counting**

\[\rightarrow \text{Improvement of one order of magnitude cross-section measurement @GeV scale} = \]

\[\text{Determine absolute } \nu_e \text{ flux at neutrino detector with } O(1\%) \text{ precision} \]
High Precision Neutrino Flux Measurements in Conventional Neutrino Beams

The Idea and The Conceptual Design

Reference Parameters
- $P_{\pi/K} = 8.5$ GeV/c (±10%)
- Tagger L=40m, r=1m
- $\langle \theta e^+ \rangle = 88$ mrad

- Short tunnel: contribution to νe flux from μ decays negligible
- $\rightarrow \nu e$ flux dominated (~98%) by neutrinos from K_e3 decays
 Complete control on νe flux with tolerable rates (<500kHz/cm²) and low irradiation (<1kGy)

- Requirements:
 - Transfer Line: as short as possible, keep contaminations low
 - Tagger:
 - e^+: Longitudinal sampling + integrated light readout
 - Photon veto: photon ID + precise timing + exploit 1mip/2mip separation
The Transfer Line

2 possibilities:

- **HORN-BASED** beamline
 → PRO: focusing more π & K in the wanted P range before the transfer part to the decay tunnel
 → Higher yields @ decay tunnel

- **CONS:**
 - Horn pulse limit < $O(1-10)$ ms
 - Tagger rate limit reached with $\sim10^{12}$ POT/spill
 - We need 10^4 ve-CC in a 500-ton detector → $\sim10^{20}$ POT = fraction of a year at present proton drivers
 $\sim10^8$ spills → challenging/unconventional

 → **Multi-Hz extractions + Horn Pulsing (2ms)** → machine studies @ SPS

- **STATIC-FOCUSING** beamline
 → PROS: Lower rates @ decay tunnel (1e+/30ns) + Possibility of event-by-event tagging by coincidences between ν_e at the detector and e^+ at the tagger

- **CONS:**
 - Less efficient focusing: lower yields, more POT needed

 → **Single slow extraction**
The Transfer Line

- Preliminary study for the Horn-based beamline completed → best configuration: Target + Horn + quad triplet + dipole + quad triplet (background studies not yet completed)
- Concentrating now on the Static beamline → looks very promising despite lower yields

Latest layout of the static transfer line option
- FLUKA for protons interactions in the target
- TRANSPORT for optic optimization + G4Beamline for complete TL simulation

Hadronic rates @ Tunnel Entrance (with G4beamline). In parenthesis (EPJ initial estimate)

<table>
<thead>
<tr>
<th></th>
<th>(\pi^+)/pot ((10^{-3}))</th>
<th>(K^+)/pot ((10^{-3}))</th>
<th>Increase factor wrt initial estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horn-based transfer line</td>
<td>77.3 (33.5)</td>
<td>7.9 (3.7)</td>
<td>(~2.2)</td>
</tr>
<tr>
<td>Static transfer line</td>
<td>26.7 (3.6)</td>
<td>2.05 (0.43)</td>
<td>(5-7)</td>
</tr>
</tbody>
</table>

- Very promising!
- Detailed study on beam contaminations in progress
1) Shashlik Calorimeter
 - Ultra Compact Module (UCM) (Fe absorber+Plastic scint)
 - Light Readout with SiPM
 \[\rightarrow 4X_0\] Longitudinal sampling: \(e^+ / \pi^\pm\) separation

2) Integrated Photon-veto
 3) 3x3 cm² plastic scintillator pads
 \[\rightarrow e^+ / \pi^0\] separation (\(\pi^0\) rejection)

\[\begin{array}{c}
\text{hadronic} \\
\text{em} \\
10 \text{ cm }= 5X_0 \\
60 \text{ cm}
\end{array}\]
The Tagger

Shashlik Calorimeter

Calorimeter prototype performance with test-beam data

Calorimeter Prototype
The Tagger

Calorimeter prototype performance with test-beam data

- Test Beam @ CERN-PS T9 beamline in Nov 2017
- 56 UCM arranged in 7 longitudinal block (~30X₀) + hadr. Layer (coarse sampling)
- e/µ tagged with Cherenkov counters and muon catcher
- Beam Composition @ 3GeV: 9% e-, 14% µ, 77% hadrons
- Tested response to MIP, electrons and charge pions

Ballerini et al., JINST 13 (2018) P01028

- em energy res 17%/√E(GeV)
- Linearity <3% in 1-5 GeV
- From 0 to 200mrad tilts tested → no significant differences
- Work to be done on the fiber-to-SiPM mechanical coupling → dominates the non-uniformities (effect corrected equilizing UCM response to mip)
- MC/data already in good agreement, longitudinal profiles of partially contained π reproduced by MC @ 10% precision
Detectors R&D

- γ/e^+ discrimination (Photon-Veto)
 - **t0 layer** scintillator ($3\times3\times0.5$ cm3) + WLS Fiber + SiPM
 - Tested @ CERN T9 in July + October
 - Goal: Study light collection efficiency $\rightarrow >95$
 - First measure of time res $\rightarrow \sigma \sim 400$ps
 - First 1mip/2mip separation using photon conversion from π^0 gammas. (π^0 by charge exchange of π^+ with low density target after silicon chambers)

 We are able to discriminate γ from Ke3 e+

- **Irradiation Studies**
 - **SiPM** were irradiated at LNL-INFN with 1-3 MeV neutrons in June 2017
 - Characterization of 12, 15 and 20 μm SiPM cells up to 1.2×10^{11} n/cm2 1 Mev-eq (i.e. max non ionizing dose accumulated for 10^4 νeCC at neutrino detector)

 irradiated SiPM tested at CERN in October 2017

 Detectors are radiation hard, we see mip & electrons

ENUBET, G. Brunetti

IFAE2018 – 6 April 2018
Conclusions

- Results of ENUBET studies coming faster than expected and very promising
- Many R&D activities currently on-going and another year of test-beams @ CERN ahead →
 - Achieve recovery time <10ns (to cope with pile-up)
 - Test of custom digitizer electronics
 - Photon veto prototypes with plastic scintillators
 - Scalable/reproducible technological solutions (water-jet holes machining for absorbers, molded scintillators, polysiloxane scintillators → First application in HEP! No drilling & high rad. hard)
- Static beam line looks very promising, would avoid the problem of pulsing a horn + event-by-event tagged beam!
 Work in progress to have precise estimation of expected beam backgrounds

- By The end of the year we expect to complete the Reference Design:
 Complete simulation end-to-end of the beamline +
 Final configuration of the calorimeter +
 (will test a non-shaslik configuration as well)
 Updated physics performance
 (monitor of major BR of K+, neutrinos flux determination at 1%, possibility of a tagged beam)
Thank you!
Back-ups
High Precision Neutrino Flux Measurements in Conventional Neutrino Beams

Constraining \(\nu \) Fluxes

IDEAL SOLUTION FOR NEW GENERATION SHORT-BASELINES
- 1% precision on \(\nu_e \) fluxes for x-section measurements ("monitored neutrino beams")
- Comparable precision on \(\nu_\mu \) fluxes from K for x-section measurements
- Narrow-band facility where neutrino energy is well-known thanks to small momentum bite
- With static-focusing transfer line option (next slide) possibility of complete K-decay kinematic reconstruction \(\rightarrow \) \(\nu_e \) energy event-by-event ("tagged neutrino beam")

\(\nu_e \) Flux
- **Ke3 golden sample**
 - \(\pi^+/\pi^0 \) from K+ can mimic an \(e^+ \)
 e/\(\pi \) discrimination through
 I. Shower Longitudinal profile
 II. Vertex reconstruction by timing
 - Non Ke3 (silver sample) exploitable

\(\nu_\mu \) Flux
- K well constrained by tagger (from Ke3 and hadronic decays)
- \(\nu_\mu \) from K can be selected at the neutrino detector using radius-energy correlations
 \(\rightarrow \) high precision \(\sigma(\nu_\mu) \)
Neutrino Samples

- Need good e-tagging capabilities, like:
 - ICARUS/μBOONE @ FNAL
 - Proto-DUNE SP/DP @ CERN
 - Water Cerenkov (e.g. E61 @ JPARC)

- Assumed a 500 t LAr det ($6 \times 6 \times 10$ m3) @ 100 m

<table>
<thead>
<tr>
<th>E_p (GeV)</th>
<th>PoT (10^{20}) for $10^4 \nu_e^{\text{CC}}$ (on-axis)</th>
<th>Run duration (w/ nominal int)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1.03</td>
<td>~ 0.2 JPARC y</td>
</tr>
<tr>
<td>120</td>
<td>0.24</td>
<td>~ 0.4 NUMI y</td>
</tr>
<tr>
<td>400</td>
<td>0.11</td>
<td>~ 0.25 CNGS y</td>
</tr>
</tbody>
</table>

- Reference design better suited for multi-GeV (e.g. DUNE)
- Hyper-K r.o.i accessible in off-axis configuration, but larger exposures needed
- Studying the possibility to reduce the initial hadron momentum
- Can exploit also ν_μ from π ($\sim 10^5$ @ low E), estimating the initial π flux with BCT and K constraint from the tagger → to be investigated
Systematics on ν_e Flux

Positron tagging eliminates the most important contributions. Assessing in detail the viability of the 1% systematics on the flux is one of the final goals of ENUBET. Full analysis is being setup profiting from a detailed simulation of the beamline, the tagger and inputs from test beams.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistical error</td>
<td>$<1% \ (10^4 \nu_e^{cc})$</td>
</tr>
<tr>
<td>kaon production yield</td>
<td>irrelevant (positron tag)</td>
</tr>
<tr>
<td>number of integrated PoT</td>
<td>irrelevant (positron tag)</td>
</tr>
<tr>
<td>secondary transport efficiency</td>
<td>irrelevant (positron tag)</td>
</tr>
<tr>
<td>branching ratios</td>
<td>negligible + only enter in bkg estimation</td>
</tr>
<tr>
<td>3-body kinematics and mass</td>
<td>$<0.1%$</td>
</tr>
<tr>
<td>phase space at the entrance</td>
<td>to be checked with low intensity pion runs</td>
</tr>
<tr>
<td>ν_e from μ-decay</td>
<td>constrain μ from K by the tagger and μ from π by low intensity runs</td>
</tr>
<tr>
<td>e/π separation</td>
<td>being checked directly at test beams</td>
</tr>
</tbody>
</table>