ENUBET Enhanced NeUtrino BEams from kaon Tagging

1

G. Brunetti (INFN-PD) On behaf of the ENUBET Collaboration

erc

ENUBET, G. Brunetti

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement N. 681647)

High Precision Neutrino Flux Measurements in Conventional Neutrino Beams **The Idea and The Conceptual Design**

- Neutrino cross sections have crucial role in the oscillation physics $\nu\mu \rightarrow \nu e$ experiments in appearance mode need direct ve cross section measurements
- Exact knowledge of <u>initial flux</u> is the <u>main limiting factor</u> for neutrino oscillation experiments
 - Flux estimate is an indirect procedure in conventional beams
 - Remarkable progress on neutrino cross-section measurements and hadro-production in targets but still uncertainties are at the order of ~7-10%

ENUBET, G. Brunetti

High Precision Neutrino Flux Measurements in Conventional Neutrino Beams The Idea and The Conceptual Design

- Requirements:
 - Transfer Line: as short as possible, keep contaminations low
 - Tagger:
 - e+: Longitudinal sampling + integrated light readout
 - Photon veto: photon ID + precise timing + exploit 1mip/2mip separation

ENUBET, G. Brunetti

The Transfer Line

2 possibilities:

Event-count mode

2 s flat top

• **HORN-BASED** beamline

 $Target \rightarrow horn \rightarrow \ transport \rightarrow \ Tunnel$

 \rightarrow PRO: focusing more π & K in the wanted P range before the transfer part to the decay tunnel

→ Higher yields @ decay tunnel

- CONS:
- Horn pulse limit < O(1-10) ms
- Tagger rate limit reached with ~10¹² POT/spill
- We need 10⁴ ve-CC in a 500-ton detector $\rightarrow \sim 10^{20}$ POT = fraction of a year at present proton drivers
 - ~10⁸ spills \rightarrow challenging/unconventional

90 ms

→ Multi-Hz extractions + Horn Pulsing (2ms) → machine studies @ SPS

Event-by-event mode

STATIC-FOCUSING beamline → PROS: Lower rates @ decay tunnel (1e+/30ns) + Possibility of
 Target → transport → Tunnel
 → PROS: Lower rates @ decay tunnel (1e+/30ns) + Possibility of
 event-by-event tagging by coincidences between ve at the detector and e+ at the tagger

CONS:

- Less efficient focusing: lower yields, more POT needed
- → Single slow extraction

Single slow resonant extraction

ENUBET, G. Brunetti

The Transfer Line

- Preliminary study for the Horn-based beamline completed → best configuration:
 Target + Horn + quad triplet + dipole + quad triplet (background studies not yet completed)
- Concentrating now on the Static beamline \rightarrow looks very promising despite lower yields Latest layout of the static transfer line option
 - FLUKA for protons interactions in the target
 - TRANSPORT for optic optimization + G4Beamline for complete TL simulation **dump**

- Very promising!
- Detailed study on beam contaminations in progress

ENUBET, G. Brunetti

IFAE2018 – 6 April 2018

Hadron

The Tagger

1) Shashlik Calorimeter

- Ultra Compact Module (**UCM**) (Fe absorber+Plastic scint)
- Light Readout with SiPM

ENUBET, G. Brunetti

 \rightarrow 4X₀ Longitudinal sampling: **e**+/**π**± separation

2) Integrated Photon-veto

3)3x3 cm2 plastic scintillator pads

 \rightarrow e+/ π 0 separation (π 0 rejection)

Ultra Compact Module (UCM)

The Tagger

Shashlik Calorimeter

Calorimeter prototype performance with test-beam data

ENUBET, G. Brunetti

Detectors R&D

γ/e+ discrimination (Photon-Veto) t0 layer scintillator (3x3x0.5 cm³) + WLS Fiber + SiPM Tested @ CERN T9 in July+October → Goal: Study light collection efficiency → >95% First measure of time res → σ~400ps First 1mip/2mip separation using photon conversion from π0 gammas. (π0 by charge exchange of π+ with low density target after silicon chambers)

We are able to discriminate γ from Ke3 e+

• Irradiation Studies

SiPM were irradiated at LNL-INFN with 1-3 MeV neutrons in June 2017

→ Characterization of 12,15 and 20 μ m SiPM cells up to 1.2 10¹¹ n/cm² 1 Mev-eq (i.e. max non ionizing dose accumulated for 10⁴ veCC at neutrino detector)

irradiated SiPM tested at CERN in October 2017

Detectors are radiation hard, we see mip & electrons

IFAE2018 – 6 April 2018

9

ENUBET, G. Brunetti

Conclusions

- Results of ENUBET studies coming faster than expected and very promising
- Many R&D activities currently on-going and another year of test-beams @ CERN ahead →
 - Achieve recovery time <10ns (to cope with pile-up)
 - Test of custom digitizer electronics
 - Photon veto prototypes with plastic scintillators
 - Scalable/reproducible technological solutions (water-jet holes machining for absorbers, molded scintillators, *polysiloxane scintillators* → *First application in HEP! No drilling&high rad. hard*)
 Static beam line looks very promising, would avoid the σ(v_a)
- Static beam line looks very promising, would avoid the problem of pulsing a horn + *event-by-event tagged beam!*

Work in progress to have precise estimation of expected beam backgrounds

 By The end of the year we expect to complete the <u>Reference Design</u>:

Complete simulation end-to-end of the beamline + Final configuration of the calorimeter +

(will test a non-shaslik configuration as well)

Updated physics performance

(monitor of major BR of K+, neutrinos flux determination at 1%, possibility of a tagged beam)

ENUBET, G. Brunetti

Thank you!

ENUBET, G. Brunetti

IFAE2018 – 6 April 2018

11

Back-ups

ENUBET, G. Brunetti

IFAE2018 – 6 April 2018

12

High Precision Neutrino Flux Measurements in Conventional Neutrino Beams Constraining v Fluxes

IDEAL SOLUTION FOR NEW GENERATION SHORT-BASELINES

- 1% precision on ve fluxes for x-section measurements ("monitored neutrino beams")
- Comparable precision on $\nu\mu$ fluxes from K for x-section measurements
- Narrow-band facility where neutrino energy is well-known thanks to small momentum bite

 $\begin{array}{l} {\rm K}^{\rm +} \to {\rm e}^{\rm +} \, \nu_{\rm e} \, \pi^0 \, (5.1\%) \\ {\rm K}^{\rm +} \to \pi^{\rm +} \, \pi^0 \, \, (20.7\%) \end{array}$

 $K^+ \to \pi^+ \pi^+ \pi^- (5.6\%)$

 $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ (1.8%)

 $\begin{array}{l} {K^ + \to \mu^ + \, \nu_\mu } \end{array} \begin{array}{l} (63.6\%) \\ {K^ + \to \mu^ + \, \nu_\mu } \end{array} \begin{array}{l} {\pi^ 0} \end{array} \begin{array}{l} (3.3\%) \end{array}$

IFAE2018 – 6 April 2018

R vs E - v_{μ}^{CC}

 v_{μ} from K v_{μ} from π

13

With static-focusing transfer line option (next slide) possibility of complete K-decay kinematic reconstruction → ve energy event-by-event ("tagged neutrino beam")

ve Flux

- Ke3 golden sample
 - π+/π0 from K+ can mimic an e+ e/π discrimination through
 I. Shower Longitudinal profile
 - II. Vertex reconstruction by timing
- Non Ke3 (silver sample) exploitable

vµ Flux

- K well constrained by tagger (from Ke3 and hadronic decays)
- $\nu\mu$ from K can be selected at the neutrino detector using radius-energy correlations . \rightarrow high precision $\sigma(\nu\mu)$

ENUBET, G. Brunetti

Neutrino Samples

- Need good e-tagging capabilities, like:
 - ICARUS/µBOONE @ FNAL
 - Proto-DUNE SP/DP @ CERN
 - Water Cerenkov (e.g. E61 @ JPARC)
- Assumed a 500 t LAr det (6×6×10 m³) @ 100 m

E _p (GeV)	PoT (10 ²⁰) for 10 ⁴ v _e ^{CC} (on-axis)	Run duration (w/ nominal int)
30	1.03	~ 0.2 JPARC y
120	0.24	~ 0.4 NUMI y
400	0.11	~ 0.25 CNGS y

- Reference design better suited for multi-GeV (e.g. DUNE)
- Hyper-K r.o.i accessible in off-axis configuration, but larger exposures needed
- Studying the possibility to reduce the initial hadron momentum
- Can exploit also v_µ from π (~10⁵ @ low E), estimating the initial π flux with BCT and K constraint from the tagger → to be investigated

ENUBET, G. Brunetti

¹⁴

Event rates. 0.5 kt, 1.0e+20 pot, L=0.1 km

Systematics on ve Flux

Positron tagging eliminates the most important contributions. Assessing in detail the **viability of the 1% systematics** on the flux is one of the final goals of ENUBET. Full analysis is being setup profiting from a **detailed simulation** of the beamline, the tagger and inputs from **test beams**.

Source of uncertainty	Estimate	
statistical error	<1% (10 ⁴ v _e ^{CC})	
kaon production yield	irrelevant (positron tag)	
number of integrated PoT	irrelevant (positron tag)	
secondary transport efficiency	irrelevant (positron tag)	
branching ratios	negligible + only enter in bkg estimation	
3-body kinematics and mass	<0.1%	
phase space at the entrance	to be checked with low intensity pion runs	
v_e from μ -decay	constrain μ from K by the tagger and μ from π by low intensity runs	
e/π separation	being checked directly at test beams	
UBET, G. Brunetti	IFAE2018 – 6 April 2018 15	

EN