

# Optimization of a Short-Baseline Neutrino Beamline at CERN - A Non-Tracking Based Approach -NBI Workshop 2024

by Marc Andre Jebramcik & Nikolaos Charitonidis (CERN)

also on behalf of F. Terranova, F. Pupilli, M. Perrin-Terrin, A. Longhin et al.

08.10.2024



### **A Short-Baseline Neutrino Experiment: PBC-SBN**

- **ENUBET** is a proposed experiment that features a short-baseline secondary beamline. It focuses on the the  $v_e$  and  $v_{\mu}$  cross-section measurement (see A. Longhin's presentation from yesterday!)
- **ENUBET** is a **horn-less design** that may use a 4.8s or 9.6s long slow extraction from the SPS (p=400 GeV/c)
- **ENUBET** is a "monitored" neutrino beam experiment: It proposes to measure the beam flux with high precision to achieve the cross-section measurement



### **A Short-Baseline Neutrino Experiment: PBC-SBN**

- **ENUBET** is a proposed experiment that features a short-baseline secondary beamline. It focuses on the the  $v_e$  and  $v_{\mu}$  cross-section measurement (see A. Longhin's presentation from yesterday!)
- **ENUBET** is a **horn-less design** that may use a 4.8s or 9.6s long slow extraction from the SPS (p=400 GeV/c)
- **ENUBET** is a "monitored" neutrino beam experiment: It proposes to measure the beam flux with high precision to achieve the cross-section measurement.
- NuTAG takes it a step further: silicon pixel detectors measure the momentum on a particle-by-particle basis; and also measures the momentum of the μ coming out of the two-body decay of K<sup>+</sup> and π<sup>+</sup> with a 2nd tracker station

NuTAG EPJ C paper (accepted): https://doi.org/10.48550/arXiv.2401.17068 ENUBET EPJ C paper (2023): https://doi.org/10.1140/epjc/s10052-023-12116-



#### The PBC-SBN, i.e., NuTag embedded into the ENUBET REF design

#### PBC-SBN

- NuTag and ENUBET are merging → PBC-SBN supported within the PBC initiative (Physics Beyond Colliders)
- Within the PBC, the a new beamline design for ENUBET – the so-called reference (REF) design – was developed that now became the PBC-SBN. It now also includes the silicion-pixel detectors required for the NuTAG physics case.

# The starting point of the PBC-SBN: the ENUBET line

The original ENUBET beamline achieved an extremely low background signal in the decay tunnel; however, the kaon/pion yield was not fully optimized. Effectiveness improved by the **REF design developed within the PBC at CERN** (E. Parozzi, N. Charitonidis)

| Name              | baseline             | REF                 |
|-------------------|----------------------|---------------------|
| $K^+/PoT$         | $3.6 	imes 10^{-4}$  | $7.0 	imes 10^{-4}$ |
| $\pi^+/{\rm PoT}$ | $4.0 \times 10^{-3}$ | $1.1 	imes 10^{-2}$ |

400 GeV proton beam; [-10%,10%] momentum interval at p=8.5 GeV/c



- Upcoming proton economics @ CERN (see CERN-PBC-REPORT-2023-001):
  - ECN3/SHiP aims to be operated at 4E19 PoT/year [PoT="protons on target"]
  - North area FT experiments and secondary beamlines is going to be at ~1E19 PoT/year
  - The ENUBET physics case will require 5E19 PoT (assuming the ENUBET *baseline* design)
- The PBC-SBN will be operated in the range of ~5E12 PoT/spill (~67 kW) with (much) less than 1E19 PoT/year
- We are in desperate need to develop a framework that leads to a full beamline optimization. Since we have to reduce the number of required PoTs as much as possible.
- We face a multi-objective problem with a very extended parameter space that exceeds the capabilities of common accelerator-physics codes (MADX, PTC, etc.)

### **Optimization Objectives**

- Good transmission is mostly obtained by having
  - a beamline that is short (less premature decays)
  - good overlap between the acceptance and the phasespace histogram of secondary mesons



- In the ideal case a self-consistent optimization of the full beamline is carried out with a large number of free parameters for flexibility, to shape the acceptance
- A numerical optimizer is required <u>since</u>
  - one has to optimize the line for different momenta (and magnet imperfections) simultaneously
  - there is not only the transmission one has to keep an eye on (multi objective); e.g., momentum spread, beam properties at key locations
- We aim for an optimization framework that is lightweight and can run locally on any computer. Hence, tracking is avoided since it is time consuming.
- We want to optimize:
  - quadrupole parameters (aperture, length, gradient)
  - length of drift spaces
  - graphite target (density, length, radius)

### A "Novel" Optimization Approach Using MOGA



 $(\mathbf{E})$ 

## **Beamline Evaluation**

- **Preparation:** Calculate the histograms of K<sup>+</sup> and  $\pi^+$  that come out of the graphite target (**BEFORE** the optimization process)
- **Step 1:** To avoid tracking, calculate the linear acceptance in x-x' and y-y' for different momentum slices (and magnet imperfections!)



# **Beamline Evaluation**

- **Preparation:** Calculate the histograms of K<sup>+</sup> and  $\pi^+$  that come out of the graphite target (**BEFORE** the optimization process)
- **Step 1:** To avoid tracking, calculate the linear acceptance in x-x' and y-y' for different momentum slices (and magnet imperfections!)
- Step 2: "Count" the number of K<sup>+</sup> and π<sup>+</sup> within the boundary of the acceptance → beamline transmission (main optimization objective)

#### Example: CNGS graphite target

#### Acceptance curves of the PBC-SBN



# **Beamline Evaluation**

- **Preparation:** Calculate the histograms of K<sup>+</sup> and  $\pi^+$  that come out of the graphite target (**BEFORE** the optimization process)
- **Step 1:** To avoid tracking, calculate the linear acceptance in x-x' and y-y' for different momentum slices (and magnet imperfections!)
- Step 2: "Count" the number of K<sup>+</sup> and π<sup>+</sup> within the boundary of the acceptance → beamline transmission (main optimization objective)
- **Step 3...N:** The beam size, momentum spread and other parameters can be calculated analytically and used as **additional optimization objectives**
- A single beamline evaluation with sufficient accuracy takes 1.1s CPU time using some straight forward NumPy implementation + CPYMAD

#### Example: CNGS graphite target

#### Acceptance curves of the PBC-SBN



# The Results of an Example MOGA Run

- Example run with 1500 generations
- Hyper volume flattens out over time as expected
- Transmission objective more important than the other two → Select solution with rather large transmission from Pareto that does not lead to a blown up beam in the decay tunnel





# **Optimized Solution (Layout)**

- Optimized beamline is  $\sim$ 7 m shorter
- Quadrupoles in last triplet much shorter
- Beam remains -42% smaller throughout the decay tunnel
- Beam is -82% smaller at the Pb plate at Q4
- Graphite target has changed from the ENUBET target (L=0.7 m, r=3 cm) to a CNGS-like target (L=1.25 m, r=2.75 mm)
- Transmission improved by **+107%** mostly due to shape of y-y<sup>•</sup> acceptance

#### Layout comparison



E

# **Optimized Solution (Optics)**

- Optimized beamline is  $\sim$ 7 m shorter
- Quadrupoles in last triplet much shorter
- Beam remains -42% smaller throughout the decay tunnel
- Beam is -82% smaller at the Pb plate at Q4
- Graphite target has changed from the ENUBET target (L=0.7 m, r=3 cm) to a CNGS-like target (L=1.25 m, r=2.75 mm)
- Transmission improved by **+107%** mostly due to shape of y-y' acceptance



#### Optics comparison (1σ beam size)

E

### Optimized Solution (Acceptance) Acceptance comparison

- Optimized beamline is  $\sim$ 7 m shorter
- Quadrupoles in last triplet much shorter
- Beam remains -42% smaller throughout the decay tunnel
- Beam is -82% smaller at the Pb plate at Q4
- Graphite target has changed from the ENUBET target (L=0.7 m, r=3 cm) to a CNGS-like target (L=1.25 m, r=2.75 mm)
- Transmission improved by **+107%** mostly due to shape of y-y' acceptance



Tuesday, October 08, 2024

## **Verification via BDSIM after MOGA Optimization**

• Have created a BDSIM model (GEANT4 with FTFP\_BERT physics list) of the beamline to confirm the transmission gains.



| beamli | ne design | $K^+/PoT~(10^{-4})$ | $\pi^+/{\rm PoT}~(10^{-3})$ |
|--------|-----------|---------------------|-----------------------------|
| Ref.   | linear    | 11.6                | 15.8                        |
| Opt.   | linear    | 23.8~(+107%)        | 30.7~(+95~%)                |
| Ref.   | BDSIM     | 6.9                 | 9.9                         |
| Opt.   | BDSIM     | 14.5 (+110%)        | $20.4 \ (+105 \ \%)$        |

• Compared to the ENUBET baseline design, the REF design featured 2x transmission. The optimized line improved it by another factor 2x (4x in total); however, a Pb plate had to be inserted to remove positrons from the beam (small loss of intensity)



A PRAB paper is going to be submitted by Dec. 2024 The code will then become available.



### **Conceptual Feasibility Analysis for the PBC-SBN**

- Current design assumes 5E12 PoT/spill for a 4.8s slow extraction (or 1E13 PoT/spill for a 9.6 s extraction)
- The PoT requirement for the ENUBET physics cases has reduced to 1.4E19 PoT (28% of the initial requirement).
- A conceptual feasibility analysis is ongoing:
  - **The North Area:** features a slow extraction and already houses the ProtoDUNEs; however, the beamline placement is not easily achievable
  - West Area: no slow extraction; however, more space and some existing infrastructure
  - Our findings will be summarized by the end of the year and will support the application of the PBC-SBN to the ESPPU in March 2025.



### Conclusion

- The MOGA optimization based on a concept that uses <u>a non-tracking approach that uniquely couples accelerator-physics concepts with a particle-matter interaction simulation</u> appears to be highly efficient
  - Effectiveness was confirmed within BDSIM simulations
  - Good performance and results even in the range of 26+ free parameters of different types (drift spaces, quadrupole parameters, target properties)
  - Approach highly flexible and may also be used for existing secondary beamlines and new beamline designs
- The PBC-SBN beamline transmission was improved by an additional factor 2x (4x improvement over the ENUBET baseline design). The ENUBET physics case (1e4  $v_e$  events) could be reached in a time span between **5 and 10** years with a PoT investment between 13% and 26% of the North Area PoT.
- We are currently investigating a potential placement at CERN's North Area and (former) West Area

PRAB paper on optimization to be submitted before the end of this year;

PBC reports (including the PBC-SBN) are being prepared for March 2025 (ESPPU)





### Thanks for your attention! Questions?

# **Introducing the NuTAG Trackers**

- The beamline as decided cannot be used for the purpose of NuTag:
  - Six pixel monitors are required for a particle-by-particle momentum reconstruction as well as knowing the trajectory in the decay tunnel
  - Too many positrons; first pixel detector easily exceeds
    100 MHz/mm<sup>2</sup> (NA62 GigaTrackers 2 MHz/mm<sup>2</sup>)



New layout: that removes positrons:

- 1.2 cm Pb plate followed by a short dipole that removes positrons
- Last quad removed



### List of Targets

| Name                | Geometry           | Length $L$ (m) | Radius $r \ (mm)$ | Density $\rho (g/cm^2)$ |
|---------------------|--------------------|----------------|-------------------|-------------------------|
| ENUBET A            | cylinder           | 0.70           | 30                | 2.3                     |
| ENUBET B (thin)     | cylinder           | 0.70           | 10                | 2.3                     |
| CNGS A (correct)    | mulitple cylinders | 1.30*          | 2/3               | 1.8                     |
| CNGS B (collapsed)  | cylinder           | 0.70           | 2.5               | 1.7                     |
| CNGS C (thin)       | cylinder           | 1.30           | 2                 | 1.7                     |
| CNGS D (thick)*     | cylinder           | 1.30           | 3                 | 1.7                     |
| CNGS E (long)       | cylinder           | 1.40           | 2.5               | 1.7                     |
| CNGS F (short)      | cylinder           | 1.20           | 2.5               | 1.7                     |
| CNGS G (very thick) | cylinder           | 1.30           | 13                | 1.7                     |
| NuMI                | cylinder           | 0.94           | 3.7               | 1.7                     |
| T2K                 | cylinder           | 0.91           | 13                | 1.7                     |
| CNGS H              | cylinder           | 1.30           | 3.5(+0.5)         | 1.7                     |
| CNGS I*             | cylinder           | 1.30           | 3                 | 1.8                     |
| CNGS J*             | cylinder           | 1.30           | 3                 | 2.0                     |
| CNGS K*             | cylinder           | 1.30           | 3                 | 2.2                     |
| CNGS L*             | cylinder           | 1.30           | 3                 | 2.4                     |
| CNGS $M^*$          | cylinder           | 1.35 (-0.05)   | 3                 | 2.4                     |
|                     |                    |                |                   |                         |

 $(\mathbf{E})$ 

( A

 $(\mathbf{E})$ 

21

**Target comparison** 

| Identifier | Length [cm] | Radius [mm] | Comment                                                                |
|------------|-------------|-------------|------------------------------------------------------------------------|
| А          | 70          | 5           | Length of ENUBET proposed target [62]                                  |
| В          | 70          | 13          | Length of ENUBET proposed target [62] with<br>T2K's target radius [61] |
| С          | 126.1       | 2.5         | Length and radius of CNGS target $[58]$                                |
| D          | 126.1       | 13          | Length of CNGS target [58] with T2K's target radius [61]               |
| Е          | 94          | 3.7         | Length and radius of NuMi first design target $[\overline{60}]$        |
| F          | 91.4        | 13          | T2K-like target [61]                                                   |

A. Baratto-Roldán et al.: NuTag: proof-of-concept study for a long-baseline neutrino beam



20

x' [mrad]

0.03

0.01

Tuesday, October 08, 2024



x pion distribution [dp/p<25%, p=12GeV/c]

## **Does the Linear Acceptance Suffice?**

- One can analytically calculate the acceptance of the beamline in the linear limit (**fast**)
- The nonlinear acceptance; however, can only be obtained via tracking (slow)



- Clearly the linear approximation overestimates the "real" acceptance; however, is it terrible?
- Multi-objective Genetic Algorithms (MOGA) like NSGA-II are mostly based on the sorting of solutions:
  - "Keep solution A if the transmission is better than that of solution B."
- The absolute value of the transmission does not matter. The relative comparison between solution matters!
- If the map "nonlinear acceptance" → "linear acceptance" is invertible, we can stick to the optimization within a linear frame work



**Example with 200 machines:** For three different momenta, the product  $A_xA_y$  has on average a linear correlation coefficient r=0.999

### **Slicing of the Phase Space**



CNGS target: Histogram mostly block diagonal

$$\frac{\text{cov}(\mathbf{A},\mathbf{B})}{\sigma_A \sigma_B} = \begin{vmatrix} x & p_x & y & p_y & p_z \\ 1.0 & 0.9 & 1.0 \times 10^{-3} & 1.3 \times 10^{-3} & -6.8 \times 10^{-4} \\ 1.0 & 1.4 \times 10^{-3} & 1.6 \times 10^{-3} & -1.6 \times 10^{-3} \\ 1.0 & 0.9 & 3.2 \times 10^{-3} \\ 1.0 & 4.1 \times 10^{-3} \\ 1.0 & 1.0 \end{vmatrix}$$



Transmission at different momentum offsets



Target's momentum dependence



Ε

### The overlap of the acceptance with the target histogram



 $(\mathbf{E})$ 

# **Physics List Comparison**

- The results are based on the FTFP\_BERT physics list (Fritiof Precompound Model with Bertini Cascade Model. The FTF model is based on the FRITIOF description of string excitation and fragmentation. This is provided by G4HadronPhysicsFTFP\_BERT. )
- The QGSP\_BERT physics list results in in overall decrease of the yield in the 25% range (Quark-Gluon String Precompound Model with Bertini Cascade model. This is based on the G4HadronPhysicsQGSP\_BERT class and includes hadronic elastic and inelastic processes. Suitable for high energy (>10 GeV).)

