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Tackling the flux uncertainty problem

Last 10 years: knowledge of σ(ν
μ
) improved enormously 

MiniBooNE, SCIBooNE,  T2K, MINERvA, NOvA ...

● Flux constraints already in place:

✔ Muon/proton monitoring
✔ hadro-production exp. (A. Marino, M. Hartz)
✔ interactions on electrons (10-4 ν

μ
CC)

✔ Low-ν method
MINERvA Coll.

Still …

● The flux syst. “wall” is “up and kicking” being typically the dominant 
uncertainty for cross section measurements

● No absolute measurements below ~7-10%
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Tackling σ(ν
e
)

● In addition to the flux uncertainty for 
σ(ν

e
) we use the beam contamination (no 

intense/pure sources of GeV ν
e
): data still 

sparse (Gargamelle, T2K, NOvA, MINERvA)

● σ(ν
μ
) σ(ν↔

e
) delicate @ low-E (Mc. Farland)

● Poor knowledge of σ(ν
e
) can spoil :

✔ the CPV discovery potential
✔ the insight on the underlying physics 

(standard vs exotic)

NSI

3+1 

DUNE

De Gouvea et al.,  1605.0937 

● D.I.F. of stored  as in nuSTORM/nuPIL is the ideal solution but it is not easy.
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Monitored beams

(K+, π+) ν
e

protons
e+

neutrino 
detector

K decays

● Fully instrumented  

K+  e→ + ν
e 
π0  large angle e→ + 

● ν
e
 flux prediction = e+ counting

Traditional
●  Passive decay region

● ν
e
 flux relies on ab-initio 

simulations of the full chain

● large uncertainties

↔ 

Monitored

● Monitor (~ inclusively) the decays in which ν are produced
● “By-pass” hadro-production, PoT, beam-line efficiency uncertainties

Based on conventional technologies, aiming for a 1% precision on the ν
e 

flux
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K+


e

e+

0



FLUKA

π+

The ENUBET monitored beam
● Hadron beam-line: charge selection, focusing, fast transfer of π+/K+

● Tagger: real-time, ''inclusive'' monitoring of K decay products

✔ With proper hadron focusing only K decay products 
are measured in the tagger being emitted at large 
angles (unlike pion decay products) allowing

✔ a complete control of produced ν
e 

using e+ from K
e3

 
(~98%). Muon decays gives a small contribution 
thanks to the short tunnel (~50 m).

✔ tolerable rates / detector irradiation 

< 500 kHz/cm2, O(~1 kGy)

➢ p
K,π

 = 8.5 ± 20% GeV/c
➢ θ < 3 mrad over 10 x 10 cm2

➢ Tagger: L = 50 m, r = 40 cm
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Not only ν
e 

!
● ν

e
 flux constraint 

✔ K
e3

 (golden sample)
● π+/0 from K+ can mimic an e+ 

 → discriminate e/π with:
1) longitudinal profile of showers
2) reconstruct vertices by timing

✔ non K
e3

 (silver sample): only pay 
additional systematics from the K

e3
  B.R.

● ν
μ
 flux constraint 
● ν

μ 
from K are well constrained from the 

tagger (both from hadronic and K
e3

 rates)  
This class of neutrinos can be selected at 
the ν-detector using radius-energy 
correlations  high precision → σ(ν

μ 
)

ν
μ  

from K
ν

μ  
from π

● K+  → μ+ν
μ

 (63%)
● K+  → μ+ν

μ
π0 (3.2%)

● K+  → π+π0  (21%)
● K+  → π+π -π+ (6%) 
● K+  → π+π0π0 (2%)

E
ν

r
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Hadron beam-line scenarios
● Baseline choice: magnetic horns focusing.  t

impulse
 < O(1-10) ms

● tagger rate limit (~200 kHz/cm2) with ~ 1012 PoT/spill
● i.e. (many) spills with relatively “few” protons are needed

● Requiring 104 ν
e

CC in a 500 t ν-detector at 100 m implies: 

● <~ 1020  PoT  →  a fraction of a year run at present proton drivers.
● ~ 108 spills. More challenging/unconventional. 

● Solution: multi-Hz (slow resonant extraction + horn pulsing) 

Possible time-structure 
at the CERN-SPS: 

 …  20 ...

2 s flat top

10 ms 90 ms

1.2  p “WANF like”

~ 50% SPS emptying

Alternative choice: static focusing devices + long extraction. 
Much less efficient focusing (  more POT) but would open the intriguing opportunity of →
“time tagging”    → T

extr
= 1s (~ 1 observed e+ / 30 ns) + δ = 1 ns  → Accidental tag = 2 %
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Hadron beam-line deliverables/progress
● A realistic implementation of the beam-line/focusing layout.
● Site-independent. We are considering existing proton driver energies. 
● FLUKA/G4Beamline simulations in progress. Support early estimates.
● Assess beam-related backgrounds. 
● Machine studies of multi-Hz slow resonant extraction at CERN-SPS

Momentum at the tagger 
entrance (MeV)

Polar angle at the tagger 
entrance (mrad)

horn

target

Compact transfer/focusing line

tagger
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ν
e

CC

ν
μ

CC

● Need good e-tagging capabilities e.g.
● ICARUS / μBooNE @ FNAL  
● proto-DUNE SP/DP @ CERN
● Water Cherenkov (i.e. E61 @ J-PARC)

● ~500 t detector at 100 m (Ar:6x6x10 m3)

● Baseline design better suited for DUNE. 
● For HK, off-axis configurations can help at 

the expense of larger exposures. 
● Further handles: reduce the initial 

hadrons momentum (in progress).
● For ν

μ
 in the HK region one can use pion 

sample and constrain the initial overall 
hadron flux with Beam Current 
Transformer at low intensity and use 
the K constraint from the tagger. 

Neutrino samples 

E
p
 

(GeV)
POT (1020) for 104 

ν
e

CC on-axis
time

30 1.03 ~ 0.2 J-PARC y 

120 0.24 ~0.4 NuMI y

400 0.11 ~0.25 CGNS y

120 GeV

Pion 
peak

Kaon 
peak
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Systematics on the ν
e
 flux

Sources Estimate

Overall statistical error < 1 % (10000 ν
e

CC)

Integrated PoT Irrelevant (e+ tag)

K/π production yields in the target Irrelevant (e+ tag)

Secondary transport efficiency Irrelevant (e+ tag) 

Branching ratios well known + only enter enter in π bckg estimation

3-body kinematics and mass < 0.1%. Chin. Phys. C38 (2014) 090001 [PDG]

Uncertainty on phase space at 
entrance

can be checked with low-intensity runs

Electron/pion separation being checked directly at test beams

Positron tagging eliminates the most important contributions. Assessing in detail 
the viability of the 1% systematics on the flux is one of the final goals of 
ENUBET.  Full analysis is being setup profiting from a detailed simulation of the 
beamline, the tagger (WP5) and inputs from test beams.
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    Tagger technology
1) Calorimeter (“shashlik”) 

● Ultra-Compact Module (UCM)
● Integrated light readout

2) Integrated γ-veto 
● plastic scintillators or 
● large-area fast APDs
● Cherenkov radiator + LAPPD

 → π0 rejection 

2) integrated γ-veto

1) compact calorimeter with
longitudinal segmentation

Ultra Compact Module 3x3x10 cm3, 4.3 X
0

   → π± rejection

e+ (signal) topology We aim at building/testing a scalable 
demonstrator consisting of a 3 m long 

section of the instrumented tunnel by 2021
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Event building,
pile-up, eff., purity 
● Multivariate analysis to select e+ and reject 

simultaneously π+ and π0 using a GEANT4 simulation of 
the tagger.

● “Event-building” : clustering based on position and 
timing of UCM waveforms with realistic treatment of 
background (up to 500 KHz/cm2!).

● Pile-up effect on K
e3

 efficiency seen at nominal rates. 
Mitigation enlarging the radius: ~ 25 % (~ 50 % purity).

e+ in 2 ns at nominal 
rates and 40 cm radius

K e3
 e

ffi
ci

en
cy

electron neutrino energy (MeV) visible energy 

Re
co

ns
tr

uc
te

d 
de

ca
ys

Work in progress

Work in progress

Work in progress

Work in progress

Work in progress

Work in progress

isolated K
e3

K
e3

 at nominal rates (5x1011 (K+π)/s)
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Test beam at 
CERN-PS T9 Nov. 2016
●  Test data/MC agreement and e/π separation 

at grazing incidence (~ 30 X
0
, orientable cradle)

● 56 (e.m.) + 18 (had.) UCM, 666 SiPM
“hadronic”

“electromagnetic”

beam
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e/π separation analysis with test beam data
● Electrons/muons tagged by T9 

Cherenkov counters and a muon 
catcher. Silicon strip chambers for 
μm tracking and fiducialization. 

● Current GEANT4 simulation is 
working reasonably well already

hit map
(with silicon 
trackers)

4 GeV real data
100 mrad tilt

Data (bullets)

MC π- μ- e-

e.m. energy (a.u.)

Electron Energy resolution vs E
Data / Monte Carlo
19% stochastic term

A. Berra et al., IEEE Trans. Nucl. 
Sci, April 2017, 64 – 4 (1,6)

Work in progress

Work in progress
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Irradiation studies
● Neutron and ionizing doses have 

been studied for a tagger radius of 40, 
80 and 100 cm with FLUKA and cross-
checked with GEANT4. 

● Choosing 100 cm allows ~ 1 x 1012 n 
1MeV-eq/cm2 and ~0.25 kGy in the 
innermost layers in the detector 
lifetime.

● Test irradition with 1-3 MeV 
neutrons performed at INFN-LNL CN 
Van de Graaff on 12-27 June 2017.

● Characterise rad-hard SiPM with 12-
15-20 μm cell size (FBK, SensL) up to 
1011-12 1MeV-eq n/cm2. 

● Test viability of self-calibration with 
m.i.p.

p(5MeV)+9Be  n +X→

Irradiation 
radial profile 
(FLUKA sim.)

Single p.e. peaks (laser)
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Lots of ongoing R&D activities
CERN-PS:  4 weeks this year at T9 (July and Oct.)

● Test response of irradiated SiPM
● Achieve recovery time <~10 ns (to cope with pile-up)
● Test of custom digitizers electronics
● photon veto prototypes with plastic scintillators

● Scalable/reproducible technological solutions
● Molded scintillators, water-jet holes machining for absorbers
● Polysiloxane scintillators/powder absorbers 
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● Flux error limit could be reduced by one order 
of magnitude exploiting K+  → 0 e + 

e
● In the next 4 years ENUBET will investigate this 

approach and its application to a new generation 
of cross section experiments with possible 
extensions for a phase-II sterile neutrino search 
and a time-tagged facility

Conclusions

● 1st year of the project: a rich simulation and 
prototyping program is giving very promising 
results. Challenging open items ahead. No 
showstoppers so far. 

 ENUBET 

σ(ν
e
)

1% sys. + 1% overall stat. errors 
(10.000 ν

e
CC) Eur. Phys. J. C75 (2015) 155

● ENUBET is working to demonstrate that a 
“positron monitored” 

e
 source can be built using 

existing technologies at CERN, FNAL or J-PARC 
giving a measurement of σ(

e
) at 1% with a 

detector of moderate mass (500 t)
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ENUBET, A. Longhin                                                                                                    26/06/2017, NUINT, Toronto 19

Thank you!

● A. Longhin, L. Ludovici, F. Terranova, 
Eur. Phys. J. C75 (2015) 155

● A. Berra et al., NIM A824 (2016) 693
● A. Berra et al., NIM A830 (2016) 345
● CERN-SPSC-2016-036 ; SPSC-EOI-014

L. Ludovici
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The Ultra Compact Module  (UCM)

spring 2016 
prototypes

Concept validated by SCENTT R&D within
INFN Gruppo 5 (2016-17)

● 1 SiPM  1 WLS fiber↔
● 9 SiPM signals are added (reduce R/O costs)
● Add SiPM signals in place of light → no 

WLS bundling = optimal homogenity in 
longitudinal sampling (UCM) 

NIM A824 (2016) 693
NIM A830 (2016) 34

4.3 X
0
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The e+ tagger challenges

π+ 
background

e+signal
● extended source of ~ 50 m
● grazing incidence 
● significant spread in the initial direction

The decay tunnel: a harsh environment
● particle rates: > 200 kHz/cm2

● backgrounds:  pions from K+ decays

Moreover: 

Max rate 
(kHz/cm2)

μ+ 190

γ 190

π+ 100

e+ 20

all 500

Injecting 1010 + in a 2 ms spill  →

, , , e+)
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SHiP: arXiv:1504.04956

Hadron beam-line: “static” scenario
● Static focusing: large aperture radiation-hard quadrupoles
● Advantage: tagger far from maximal tolerable rates
● Disadvantage: loss of acceptance w.r.t. horn-based

● PoT to get 104 ν
e

CC: >~ × 1021 (~ X10 more wrt horn focusing). 
● Still feasible. Can be compensated by (run time × det. mass)
● R&D on static focusing beam-line:

 →maximize collection efficiency (~ “useful” hadrons/PoT) 
● Single resonant slow extraction over O(s)  synergies with ← SHiP

Intriguing opportunity: “time tagging”   →
 T

extr
= 1s (~ 1 observed e+ / 30 ns) + δ = 1 ns  → Accidental tag = 2 %
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ENUBET: the roadmap

1) Construction, tests of a tagger demonstrator 
(three m of the instrumented decay tunnel)
2) Systematics with full simulation supported by test 
beam campaigns at CERN-PS and INFN-LNF/LNL
3) Design of the hadronic beam-line
4) Test new proton extraction schemes at CERN-SPS

Demonstrate the technique, prepare a “full-scale” experiment

● Calorimetry: compact, modular, low-cost detectors (UCM)
● Accelerator physics: Multi-Hz slow resonant extraction

1)

2)

2)

3)
4)

By-products: 
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Results from UCM prototypes

Requirements for ENUBET:

● m.i.p. sensitivity w/o saturation for e.m. showers 
up to 4 GeV DONE

● E resolution < 25% / E½ DONE
● No role for “nuclear counter” effects (direct 

ionization of SiPM in the e.m. shower) DONE

Data / Monte Carlo
19% stochastic term

Cheap, fast (<10 ns), 
Rad-hard technological solution

Geant4

A. Berra et al., IEEE Trans. Nucl. Sci., in press.
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First test beam validation of UCM 
CERN-PS T9 test beam (July 2016). Beam: π, e, μ from 1-5 GeV. 
12 ENUBET UCM modules (~13 X

0
). 1 mm2 HD Si-PM with 20 m cell size (FBK). 

No dead zones, 
uniform long. sampling

A. Berra et al., IEEE Trans. Nucl. Sci., in press.

3 GeV beam



 

ENUBET, A. Longhin                                                                                                    26/06/2017, NUINT, Toronto 26

Going beyond: ''time-tagged'' beams

Accidental tag probability using 1010  hadrons/burst: A ~ 2×107 δ/T
extr

 

T
extr

= 1s (~ 1 observed e+ / 30 ns) + δ = 1 ns  → A = 2 %  OK !

Time-tagging not possible using magnetic horns, (scenario A):
T

extr
 = 2 ms (1 e+ / 70 ps) even δ = 50 ps gives A = 50%

Δ

e+ ν
e

CC

Time coincidence of 
ν

e

CC and e+       |δt - Δ/c| < δ

δ = combined t-resolution (e+ tagger and n detector) 

● Event time dilution  → time-tagging
● Associating a single ν interaction to a tagged e+ with a 
small “accidental coincidence” probability through time coincidences
● E

ν
 and flavor of the neutrino know ''a priori'' event by event.

Superior purity. Combine E
ν
 from decay with the one deduced from the interaction. 
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All particles will intercept at least one doublet
A positron on average will cross 5 doublets

    = 7 cm

The photon-veto baseline option

Exploit 1 mip – 2 mip separation 

● Possible alternative/attractive solutions under scrutiny allowing a reduced material 
budget and superior timing.

● Test beams at Frascati: electronics response at high rates and low-E  e+,1 mip/2 mip

 Background from γ conversions from π0 emitted mainly in K
e2 

decays (K+  → π+ π0)
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The final prototype

Outer 
modules

Inner 
modules

SiPM + PCB

● Dimensions: 3 m  
● # SiPM: 34000
● Channels: 3800
● Weight: ~ 5 t
● WLS fiber length: ~10000 m
● Readout: custom waveform digitizers, 

2 ns granularity over ~10 ms

1 super-module

● 5 super-modules
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Pion decays induced backgrounds
● p+  m→ ± n

m 
creates the bulk of n

m  
(~ 95% p @ 400 GeV)

● n detector must have good n
e
 PID: reject NC p0 in the n

e
CC sample

● 2-body decay, m
m

 ~ m
p 
: m+ ~ 4 mrad  few in the tagger, easy to reject→

● m D.I.F : suppressed L
m

 >> L(decay tunnel)
● 3-body but m

m
 ~ 0.2 m

K
 → e+

DIF
 ~ 28 mrad (e+

Ke3 
~ 88 mrad)

● n
e, 

CC,DIF ~ 3.3%  → ~ all n
e
 are from K

e3

D
U
M
P

+

+




tagger

D
U
M
P

+

+

tagger

e+


e



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Inferring σ(ν
e
) from σ(ν

μ
) ?

0) σ(ν
μ
) is also poorly known due to flux systematics

1) Lepton universality in weak interactions is not the full story:
✔ Uncertainties from the interplay of 

● radiative corrections
● nucleon form factors 

● F
P
, F

V
1,2, F

A
, second class currents

● alteration of kinematics due to mass

Day, McFarland, Phys. Rev. 
D86 (2012) 052003

→ Differences between σ(ν
μ
) and σ(ν

e
) (Δ)

● can be significant (10-20%) espec. at low-E
● with different energy trends for ν and ν
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Choosing the K±/π± momentum and tunnel length

K+ decays
μ+ decays in flight

High momentum

Benefits:  
● small loss in the transport line 
● improved e/π separation

Costs: 
● E(ν

e
) above the R.O.I.

● longer decay region

L = 100 mL = 50 m

1) keeping the tunnel ''short''
2) increasing the K±/π± energy  

increases ν
e
 from K

e3
 with few ν

e
 from μ D.I.F.

Current scenario p = 8.5 GeV/c ± 20%
L = 50 m

 e 
/



Momentum of parent mesons (K, ) (GeV/c)

A trade-off: further 
optimization in ENUBET
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Hadronic modules
Electro-magnetic modules

π0 (background) topology

π+ (background) topology

e+ tagger: background rejection

e+ (signal) topology

Hit modules
Key point: 
● longitudinal sampling
● perfect homogeneity  integrated light-readout→
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D
U
M
P

The golden channel: K+  → π0 e+ ν
e

K+

e+


e

tagger

● Golden sample: good acceptance for 
e+ from K

e3
 thanks to the large 

emission angle (~ K mass)

● L
m

 >> L(decay tunnel) ν
e, 

CC,DIF ~ 3.3%
  → ~ all ν

e
 are from K

e3
 

Angular distribution of e+ from K
e3

0



88 mrad
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Hadron beamline with horn focusing

Simple 
conversion

Simple 
conversion

* J-PARC > 2 x 1021 PoT
    CNGS = 0.18 x 1021 PoT

           NuMI = 1.1 x 1021 PoT
1.94 × 1013 K+ / ν

e

CC 
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Tagged neutrino beams: the origins 
The ''holy grail'' of neutrino physicists: 

● L. Hand, 1969, V. Kaftanov, 1979 (p/K  n→
m

)
● G. Vestergombi, 1980, R. Bernstein, 1989 (K n→

e
)

● S. Denisov, 1981, R. Bernstein, 1989 (K
e3

)

 B. Pontecorvo, Lett. Nuovo Cimento, 25 (1979) 257

What's new with ENUBET: 
● a compelling and new physics case: a beam design optimized for σ(ν

e
)  

● taking advantage of the progress in fast, cheap, radiation-hard detectors
● using K+  e→ + π0 ν

e
 (K+

e3
 decays) 

Literature:

● L. Ludovici, P. Zucchelli, hep-ex/9701007 (K
e3

)
● L. Ludovici, F. Terranova, EPJC 69 (2010) 331 (K

e3
)
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→  5% pile-up 
probability (= RSΔt

tag
)

Pile-up  

Not decayed π, K do not intercept the tagger “by 
construction”. Pile-up mostly from overlap between a  K

μ2
 

and a candidate e+

Recovery time, Δt
tag 

= 10 ns

Rate, R = 0.5 MHz/cm2

Tile surface, S ~ 10 cm2

Possible mitigation: veto (also offline) mip-like and punch-through particles using the longitudinal 
segmentation of the tagger + eventually a μ catcher

Radiation
Only contribution comes from K/π decay products. Thanks to bending of the 
secondaries, non-interacting protons or neutrons are not dumped in the tagger. 
   Livetime integrated dose O (1 kGy) (~100 kGy for CMS forward ECAL)

e+ tagger: pile-up and radiation 
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