eno bet

The ENUBET neutrino beam

A. Longhin (Padova University and INFN) on behalf of the ENUBET Collaboration

European Union's Horizon 2020 research and innovation programme (G.A. n. 681647).

NUINT 2018 L'Aquila, 15-19 Oct 2018

ENUBET: 52 physicists, 11 institutions

Monitored beams

Based on conventional technologies, aiming for a 1% precision on the ve flux

protons
$$\longrightarrow$$
 (K⁺, Π ⁺) \longrightarrow K decays \longrightarrow e $\stackrel{\bullet}{e}$ $\stackrel{\bullet}{e}$ $\stackrel{\bullet}{e}$ detector

- Monitor (~ inclusively) the decays in which v are produced
- "By-pass" hadro-production, PoT, beam-line efficiency uncertainties
- Fully instrumented decay region

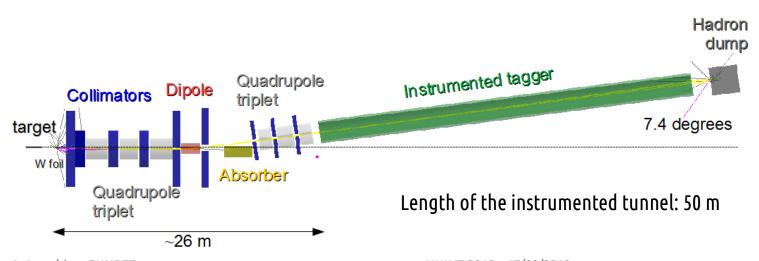
$$\mathbf{K}^{\scriptscriptstyle +} \to \mathbf{e}^{\scriptscriptstyle +} \mathbf{v}_{_{\mathbf{e}}} \mathbf{n}^{\scriptscriptstyle 0} \to \text{large angle } \mathbf{e}^{\scriptscriptstyle +}$$

v_e flux prediction = e⁺ counting

Removes the leading source of uncertainty in v cross section measurements

To get the correct spectra and avoid swamping the instrumentation → needs a collimated momentum selected hadron beam → Correlations with interaction radius allows an a priori knowledge of the neutrino spectra

Neutrino beams for precision physics: the ERC ENUBET project


The next generation of **short baseline** experiments for **cross-section** measurements and for **precision v physics** (e.g. sterile v and NSI) should rely on:

- ✓ a direct measurement of the fluxes
- ✓ a narrow band beam: **energy known a priori** from beam width
- ✓ a beam covering the region of interest from sub- to multi-GeV

ERC-CoG-2015, G.A. 681647 (2016-21) PI A. Longhin, **Padova University, INFN**

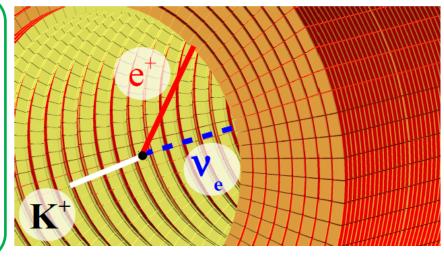
The ENUBET facility fulfills simultaneously all these requirements

~ 500 t neutrino detector @ 100 m from the target

e.g.ICARUS@FNAL or ProtoDUNE-SP/DP@CERN

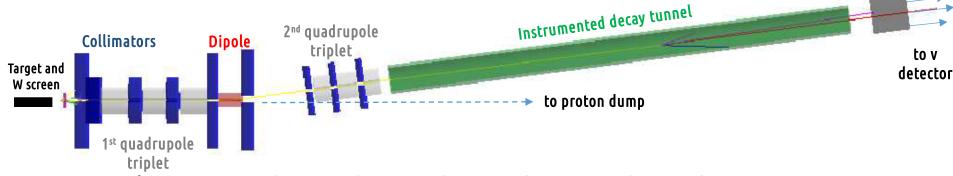
A. Longhin - ENUBET NUINT 2018 – 17/09/2018

ENUBET goals and highlights


Goal: demonstrate the technical feasibility and physics performance of a neutrino beam where **lepton production at large angles is monitored at single particle level**.

Two pillars:

- Build and test with data a demonstrator of the instrumented decay tunnel
- Design/simulate the layout of the hadronic beamline


We present at NUINT 2018

- The first end-to-end simulation of the hadronic beamline
- The updated physics performance
- The latest results on the design and construction of the beamline instrumentation

The ENUBET beam line

- Proton driver: CERN (400 GeV), FNAL (120 GeV), J-PARC (30 GeV)
- Target: 1 m Be, graphite target. FLUKA 2011
- Focusing
 - Horn: 2 ms pulse, 180 kA, 10 Hz during the flat top [not shown in fig.]
 - Static focusing system: a quadrupole triplet before the bending magnet

Transfer line

- Optics: optimized with TRANSPORT to a 10% momentum bite centered at 8.5 GeV/c
- Particle transport and interaction: full simulation with G4Beamline
- All normal-conducting magnets, standard aperture, 2 quad triplets, 1 bending dipole

Decay tunnel

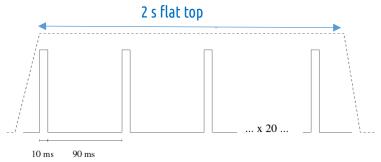
- Radius: 1 m. Length: 40 m
- low power hadron dump at the end of the decay tunnel
- Proton dump: position and size under optimization (in progress)

The ENUBET beam line - Yields

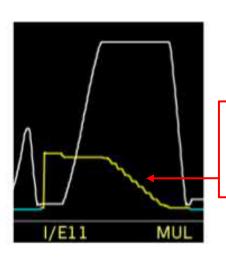
Focusing system	п/pot (10 ⁻³)	K/pot (10 ⁻³)	Extraction length	п/cycle (10¹º)	K/cycle (10¹º)	Proposal (c)
Horn	97	7.9	2 ms ^(a)	438	36	X2
"static"	19	1.4	2 s (b)	85	6.2	x5

- (a) 2 ms at 10 Hz during the flat top (2 s) to empty the accelerator after a super-cycle.
- (b) Slow extraction. Detailed performance and losses currently under evaluation at CERN
- (c) A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155.

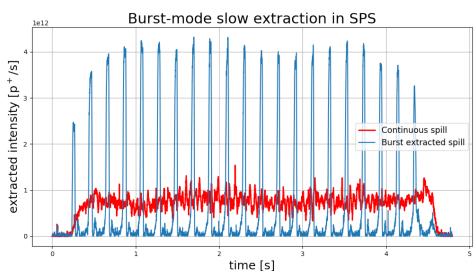
Advantages of the static extraction:


- No need for fast-cycling horn
- Strong reduction of the rate in the instrumented decay tunnel
- Monitor the μ after the dump at % level (<u>flux of v_u from π </u>) [NEW: under evaluation]
- Pave the way to a "tagged neutrino beam", namely a beam where the neutrino interaction at the detector is associated in time with the observation of the lepton from the parent hadron in the decay tunnel

The ENUBET beam line: horn-based option

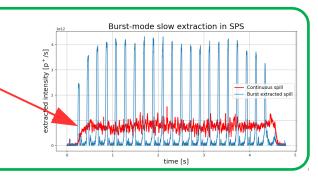


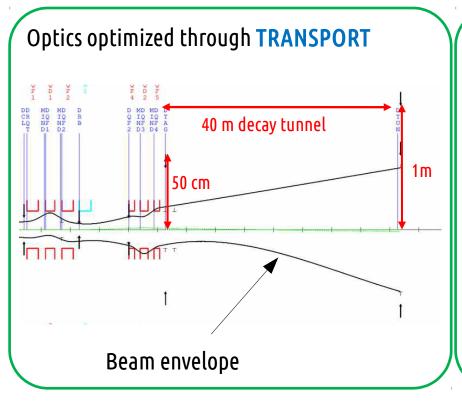
Machine studies @ SPS are currently on-going:


Preliminary studies Jul/Aug 2018 CERN-BE-OP-SPS, Velotti, Pari, Kain, Goddard

Slow extraction is induced by going to the third integer betatron resonance with a periodic pattern

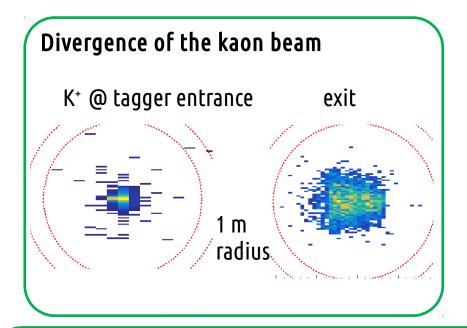
Proton current steps in correspondance of bunches

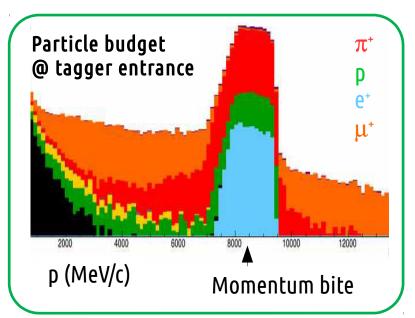

- Beam bunches in time with horn pulses
- **Further studies** → understand radiation losses. Iterative corrections. Sextupoles: sharper bursts.

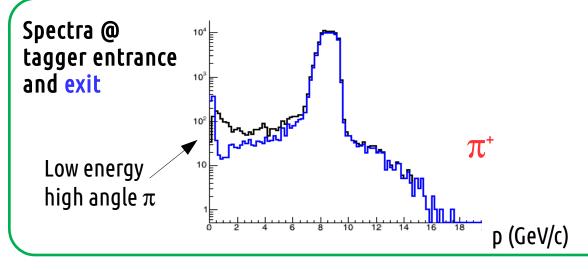

Proton current

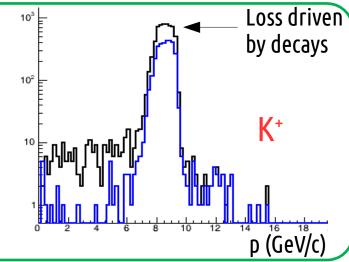
The ENUBET beamline: "static" option

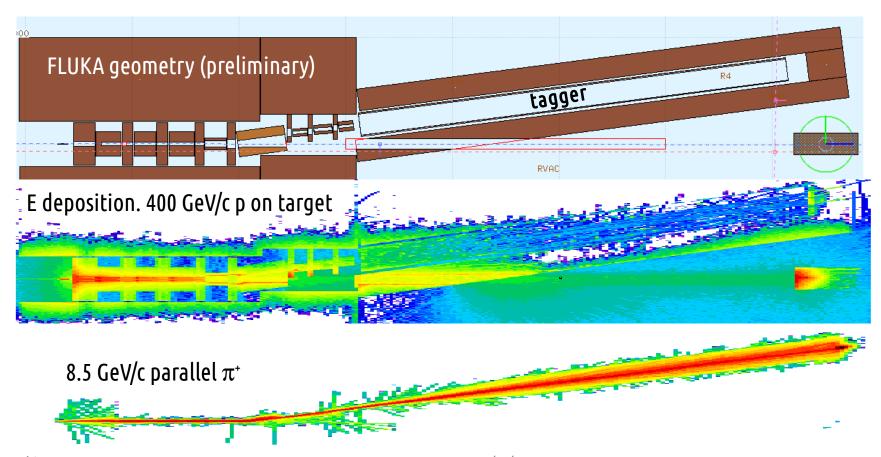
- Proton extraction scheme: Single slow extraction (2-4 s).
- Reference beam: 8.5 GeV/c, 10% momentum bite
- Quadrupoles: 15 cm wide, L < 2 m, B = 4 to 7 T
- Dipole: 15 cm wide, L = 2 m, B = 1.8 T \rightarrow 7.4° bending
- Envelope at tunnel exit 50 ×50 cm (Tunnel radius 1m)




G4beamline


"full simulation" \rightarrow efficiencies, backgrounds

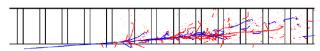

The static beamline: emittance, particle content



The static beamline: FLUKA simulation

Goals: assess the specs of **rad-hard upstream focusing quadrupoles**Optimize shielding to

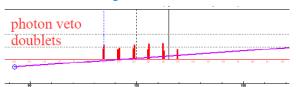
- reduce halos in the tagger region
- **suppress the decays** of off-momentum mesons **out of tagger acceptance** Work in progress. Study the **location of the proton dump**.

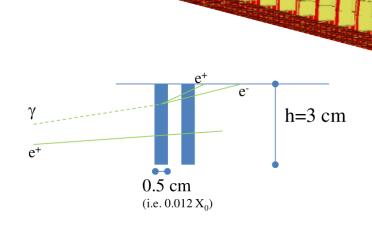


The ENUBET tagger

Calorimeter

Longitudinal segmentation Plastic scintillator + Iron absorbers Integrated light readout with SiPM


 \rightarrow e⁺/ π [±]/ μ separation

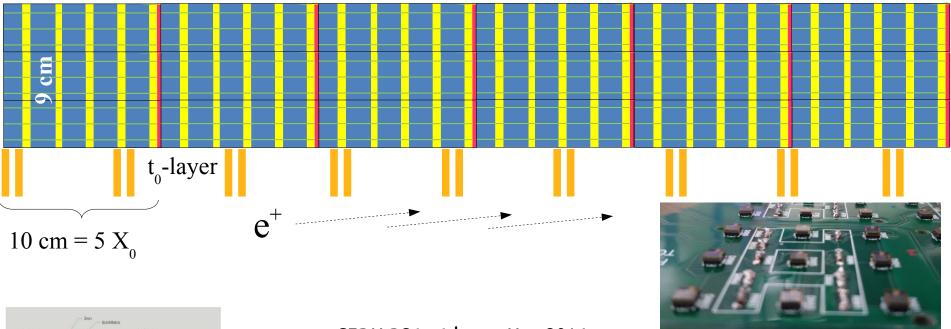


Integrated photon veto

Plastic scintillators Rings of 3×3 cm² pads

→ n⁰ rejection

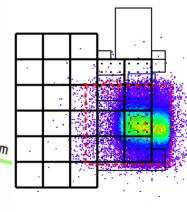
 π^{0} (background) topology



Ultra Compact Module

 $3 \times 3 \times 10$ cm³ – 4.3 X₀

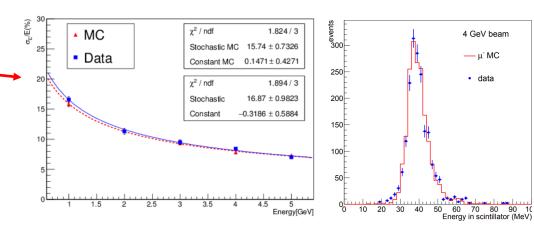
The tagger: shashlik with integrated readout

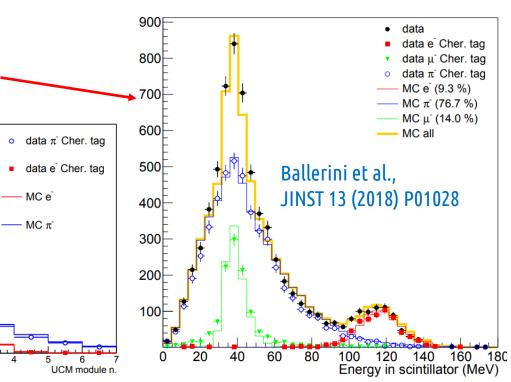


30mm Scristor Plane
30mm ISom

CERN PS test beam Nov 2016

Test beam results with shashlik readout

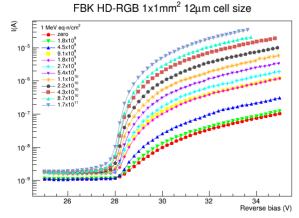

Calorimeter prototype performance with test-beam data @ CERN-PS T9 line 2016-2017


Tested response to MIP, e and π^-

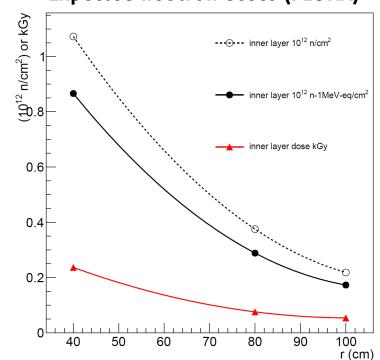
- e.m. energy resoluton: 17%/√E (GeV)
- Linearity deviations: <3% in 1-5 GeV range
- From 0 to 200 mrad → no significant differences
- Work to be done on the fiber-to-SiPM mechanical coupling → dominates the nonuniformities

 Equalizing UCM response with mips MC/data already in good agreement

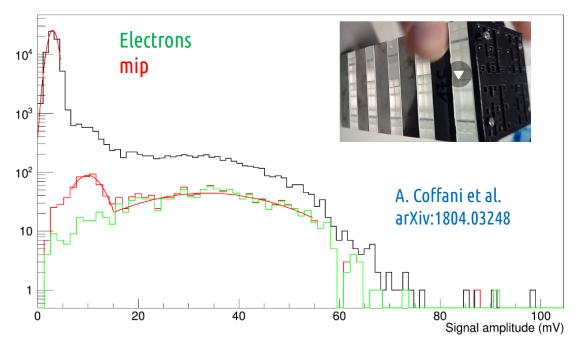
longitudinal profiles of partially contained π reproduced by MC @ 10% precision



A. Longhin - ENUBET

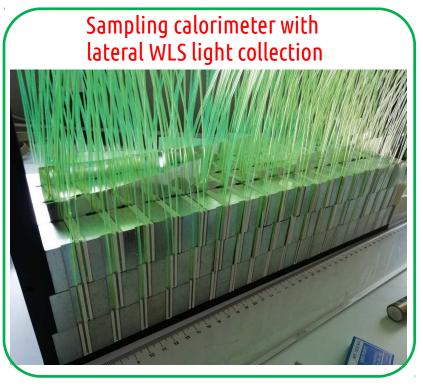

SiPM irradiation studies

SiPM were irradiated at LNL-INFN with 1-3 MeV neutrons in Jun 2017

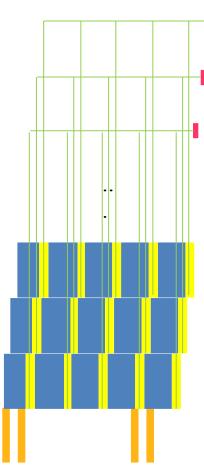

 \rightarrow Characterization of 12,15 and 20 µm SiPM cells up to 1.2 x 10¹¹ n/cm² 1 MeV-eq (max non ionizing dose for 10⁴ v_e^{CC} at a 500 t v detector)

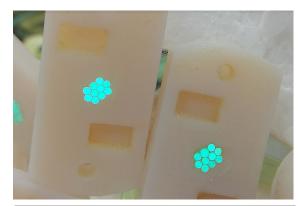
Expected neutron doses (FLUKA)

Irradiated SiPM tested at CERN in Oct 2017



- Mips can be used from **channel-to-channel intercalibration** even after the maximal irradiation.
- Tests allowed tuning of scintillator thickness (or equivalently min p.e. yields) and compensation with overvoltage tuning.

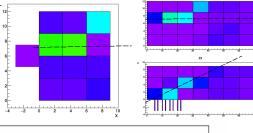

The tagger: lateral readout option

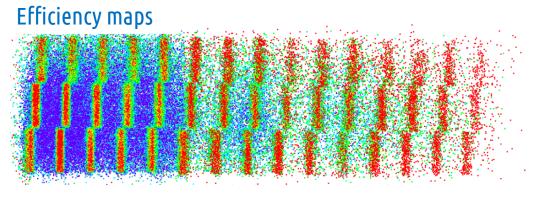


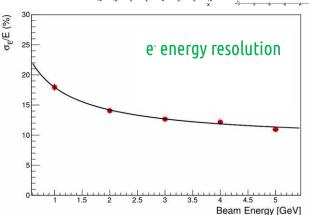
Light **collected from scintillator sides** and **bundled** to a single SiPM reading 10 fibers (1 UCM). SiPM are not immersed anymore in the hadronic shower → less compact but .. much **reduced neutron damage** (larger safety margins), better **accessibility**, safer **WLS-SiPM coupling**.

May 2018, CERN-PS test beam

The Tagger – Detector R&D

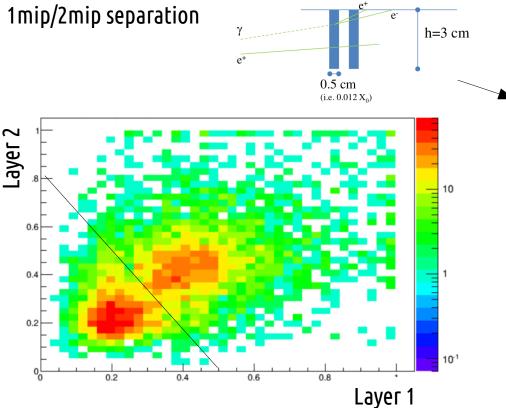


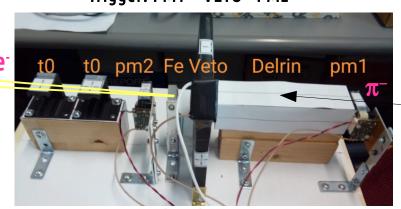

September 2018 CERN-PS: a module with hadronic cal. for pion containment and **integrated** t_n -layer

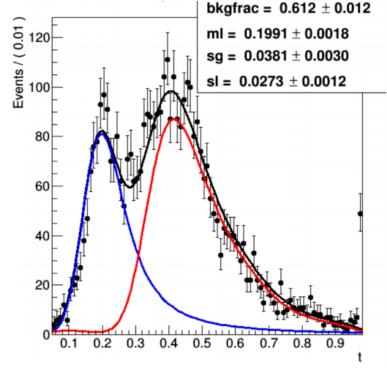

Resolution, light yield, uniformity, optical coupling to photo-sensors, e/π separation. In progress.

A. Longhin - ENUBET

The photon veto – test beam

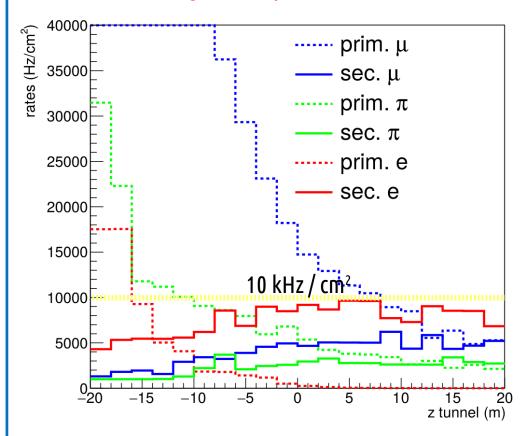

@ CERN-PS T9 line 2016-2018

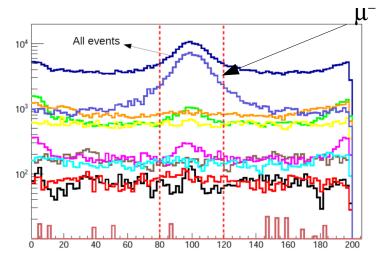

charge exchange: $\pi - p \rightarrow n \pi^0 (\rightarrow \gamma \gamma)$ Trigger: PM1 + VETO +PM2


• γ / e⁺ discrimination + timing scintillator (3×3×0.5 cm³) + WLS Fiber + SiPM

• light collection efficiency → >95%

time resolution $\rightarrow \sigma \sim 400 ps$

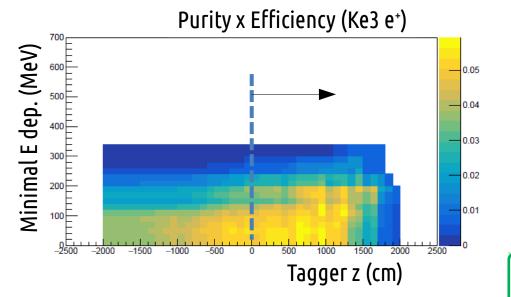

Particle rates in the decay tunnel from full sim.


Static focusing system, 4.5 10¹³ pot in 2 s (400 GeV)

Calorimeter 1 m from the axis of the tunnel (R_{inner} =1.00 m) Three radial layers of UCM (R_{outer} =1.09 m)

Rate vs longitudinal position in the tunnel

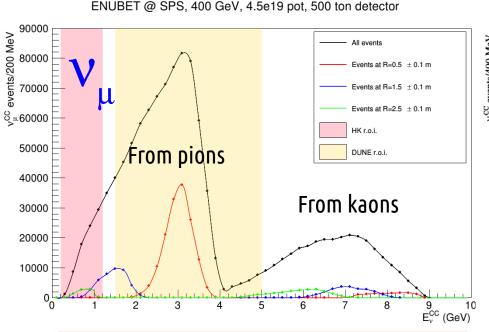
Rate vs the azimuthal angle in the tunnel


The bulk of the muons lies on the dipole Bending plane → can be easily removed

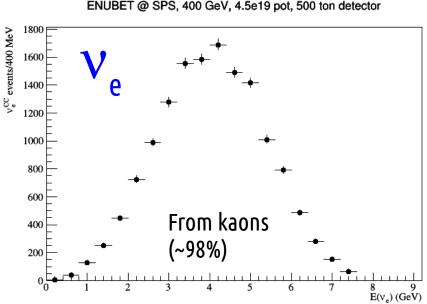
Positron ID from K decay

Full GEANT4 simulation of the detector, validated by prototype tests at CERN in 2016-2018. Includes particle propagation and decay, from the transfer line to the detector, hit-level detector response, pile-up effects.

Analysis chain Event Builder		F. Pupilli et al., PoS NEUTEL2017 (2018) 078 Identify the seed of the event (UCM with large energy deposit) and cluster neighboring modules (in time and space)			
e/ π/μ separation		Multivariate analysis based on 6 variables (pattern of the energy deposition in the calorimeter) with TMVA			
e/γ separation		Signal on the tiles of the photon veto			

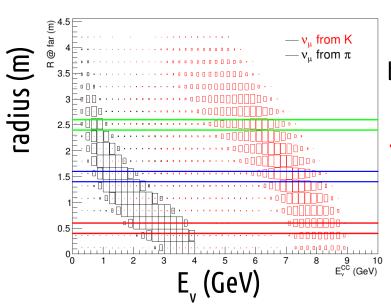

E geom	0.36	
E _{sel}	0.55	
E tot	0.20	
Purity	0.26	cut 0.46
S/N	0.36	• 0.46

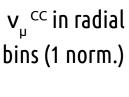
Instrumenting half of the decay tunnel: $K_{e3} e^+$ at single particle level with a S/N = 0.46

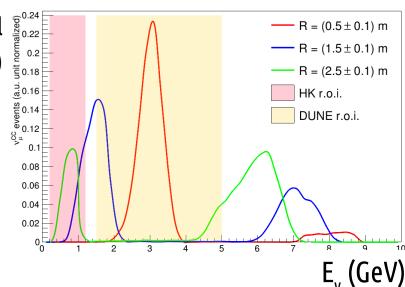

Neutrino events per year at the detector

- Detector mass: 500 t (e.g. Protodune-SP or DP @ CERN, ICARUS @ Fermilab)
- Baseline (i.e. distance between the detector and the beam dump): 50 m
- Integrated pot: 4.5×10^{19} at SPS (6 months in dedicated mode, ~1 year in shared mode) or, equivalently, 1.5×10^{20} pot at the Fermilab Main Ring.
- Warning: detector response not simulated!

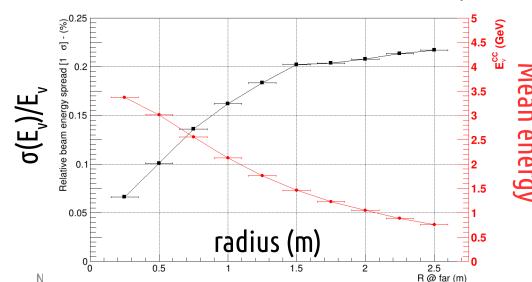
1.2 million v_{\mu} Charged Current per year




14000 v_e Charged Current per year

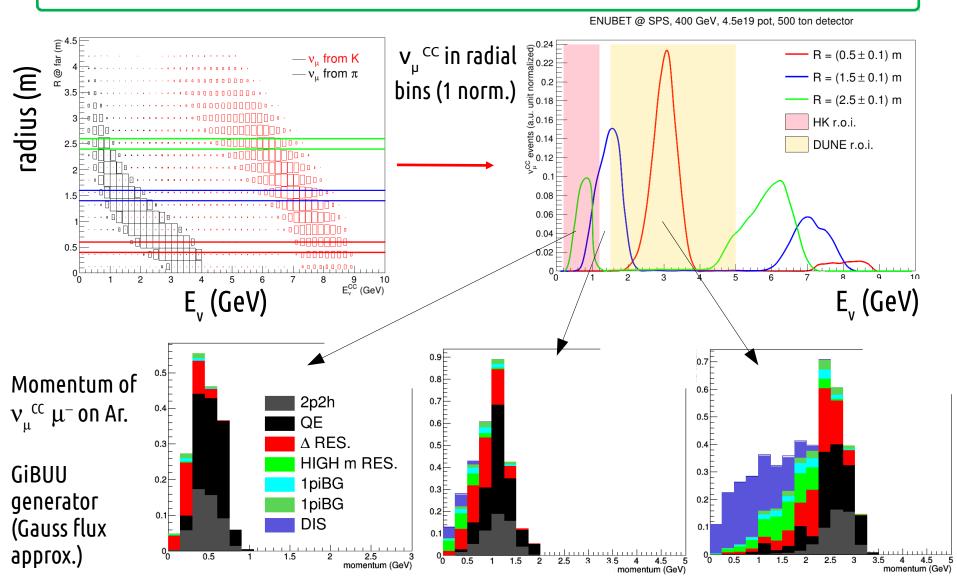

v_u CC events at the ENUBET narrow band beam

The neutrino energy is a function of the distance of the neutrino vertex from the beam axis.



ENUBET @ SPS, 400 GeV, 4.5e19 pot, 500 ton detector

The beam width at fixed R
(≡ neutrino energy resolution) for the pion component is


- 8 % for r ~ 30 cm, <E_v>~ 3 GeV
- 22% for r ~ 250 cm, <E_y> ~ 0.7 GeV

v_u CC events at the ENUBET narrow band beam

The neutrino energy is a function of the distance of the neutrino vertex from the beam axis.

Conclusions

ENUBET is a narrow band beam with a high precision monitoring of the flux at source (O(1%)) and control of the E_y spectrum (20% at 1 GeV \rightarrow 8% at 3 GeV)

2018 has been a special year, we have

- provided the first end-to-end simulation of the beamline (Jul)
- Proved the feasibility of a purely static focusing system (10 6 v_{μ}^{CC} , 10 4 v_{e}^{CC} /y/500 t)
- full simulation of e⁺ reconstruction: single particle level monitoring. S/N ~ 0.5
- Tested with machine data the "burst" slow extraction scheme at the CERN-SPS (Aug)
- **completed the test beams** campaing (Sep) before LS2
 - → identified best options for instrumentation (shashlik and lateral readout)
- Strengthened the physics case:
 - → slow extraction + "narrow band off-axis technique"

The ENUBET technique is **very promising** and the results we got in the **last twelve months exceeded our expectations**

Next steps

- In 2019 we need to:
 - **decide on the light readout technology** for the final demonstrator (shashlik versus "lateral readout") → Sept. data analysis completion.
 - Improve the design of the beamline to reduce beam halo contamination (current S/N can be significantly improved)
 - Re-optimise the tunnel radius to increase geometrical acceptance
 - Systematic assessment on predicted neutrino fluxes
 - New ideas to enhance precision also on v_{μ}
 - from $K_{\mu\nu}$ with μ id in the tagger (in progress)
 - from π : counting μ from π in h-dump (could be feasible with a 2s extraction).
 - CDR at the end of the project (2021): physics and costing
 - Build a demonstrator prototype of the tagger (2021)

Padova June 2016

CERN Oct 2017

INFN-LNL Jun 2017

THANKS!

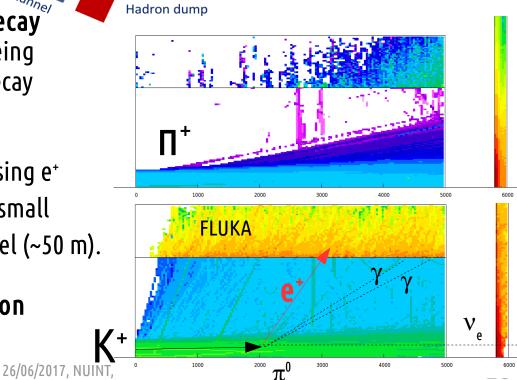
CERN May 2018

CERN Sep 2018

Milan Oct 2017

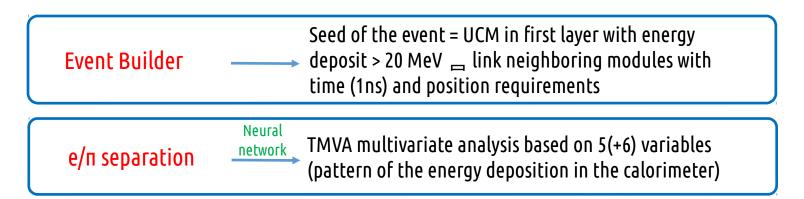
A. Longhin - ENUBET NUINT 2018 – 17/09/2018

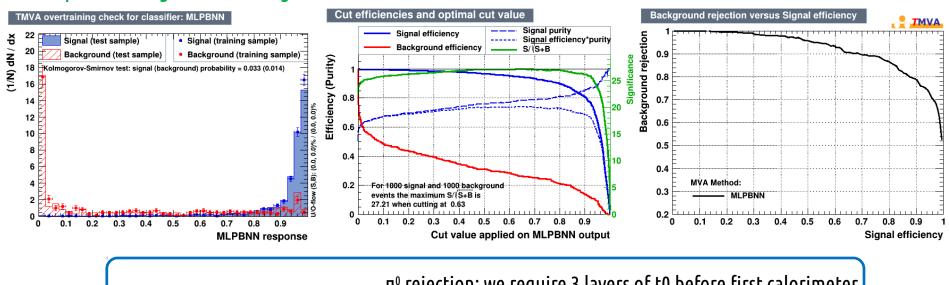
The ENUBET monitored beam


- Hadron beam-line: charge selection, focusing, fast transfer of ht/Kt
- Tagger: real-time, "inclusive" monitoring of K decay products

- With proper hadron focusing only K decay products are measured in the tagger being emitted at large angles (unlike pion decay products) allowing
 - rom K_{e3} (~98%). Muon decays gives a small contribution thanks to the short tunnel (~50 m).
 - tolerable rates / detector irradiation < 500 kHz/cm², O(~1 kGy)</p>

$$p_{K,n} = 8.5 \pm 20\% \text{ GeV/c}$$


- \rightarrow 0 < 3 mrad over 10 x 10 cm²
- > Tagger: L = 50 m, r = 40 cm


ENUBET, A. Longhin

The Tagger – positron ID from K decay

Response to signal and background

e/ γ separation ———— π^0 rejection: we require 3 layers of t0 before first calorimeter energy deposit compatible with a mip (0.65-1.7 MeV)