

erc European Research Council

The ENUBET monitored neutrino beam

108° Congresso Nazionale della Società Italiana di Fisica

Evgenii Lutsenko University of Milano Bicocca & MiB INFN on behalf of ENUBET Collaboration

Milan September 12-16, 2022

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

v cross section experiments

Previous neutrino cross section experiments used pion-based sources, which are mainly **sources of** v_{μ}

The **current** ve **cross section** precision is **O(~20%)** and even the v_{μ} cross section is known with a precision of **10%**

The dominant systematics of all cross section measurements is the **systematic** on the flux

Future experiments require precision O(1%):

- Lepton CPV
- Mass hierarchy
- PMNS parameters
- Sterile Neutrino

ENUBET physics goal: **overall error** on the flux of the produced neutrinos <1% level

→ More precise flux knowledge

2

To extract the most physics out of DUNE and Hyper-Kamiokande, a complementary program of precision supporting measurements is needed. NA61 and its upgrade are an important component of this programme for the determination of the neutrino fluxes. A study should be set up to evaluate the possible implementation and impact of a facility (based on the ENUBET or vSTORM concepts) to measure the neutrino cross sections at the percent level.

ENUBET

Enhanced NeUtrino BEams from kaon Tagging

Project approved by the European Research Council (ERC)

ENUBET is the project for the realization of the first monitored neutrino beam

- precise measurement of the v_{e} flux ٠
- (NEW!) precise measurement of the $\nu\mu$ from two body kaon decay ٠
- (NEW!) precise measurement of $\nu \mu$ from **pion decay** (instrumented beam dump) ٠

60 physicists, 13 institutions

Visit our webpage for further info and material! http://enubet.pd.infn.it

Large bending angle of 14.8°:

• better collimated beam + reduced muons background + reduced $\mathcal{V}e$ from early decays;

Transfer Line:

- optics optimization w/ TRANSPORT G4Beamline for particle transport and interactions;
- FLUKA for irradiation studies, absorbers and rock volumes included in simulation;
- optimized graphite target 70 cm long & 3 cm radius;
- tungsten foil downstream target to suppress positron background;
- tungsten alloy absorber @ tagger entrance to suppress backgrounds;

Dumps:

- Proton dump: three cylindrical layers (graphite core -> aluminium layer -> iron layer);
- Hadron dump: same structure of the proton dump -> allows to reduce backscattering flux in tunnel.

Prototypes & tests

- LCM is a sandwich of 5 iron tiles interleaved with 5 plastic scintillator tiles
- Each LCM has 10 1mm WLS fibers coupled with SiPM

MILANC

🔁 DEGLI STUDI

UNIVERS

- Doublets of plastic scintillator tiles 3x3x0.5 cm³ mounted below the LCM every 7 cm
- e^+/π^0 separation with precise timing
- Light yield for a **single mip crossing a to tile**
- \rightarrow collection of 25 p.e. with time resolution ~400 ps
- Single t0 tile selects **1-mip signal with ε=87%**

Lepton R&I performance

BICOCCA

Full GEANT4 simulation of the detector: validated by **prototype tests** at CERN in 2016-2018; hit-level detector response; **pile-up effects** included (waveform treatment in progress); event building and **PID algorithms** (2016-2020);

- Large angle **positrons** and **muons** from **K decays** reconstructed searching for patterns in energy depositions in tagger;
- Signal identification done using a Neural Network trained on a set of discriminating variables.

Efficiency ~half geometrical

Tagger impact point

F. Pupilli et al., PoS NEUTEL 2017 (2018) 078 **7**

Detector prototype

The **demonstrator** is a **full scale prototype** of the instrumented tunnel but the length is 1.65 m

calo

To be tested at CERN in October 2022

- **Dimensions**: 1.65m x $\pi/2$
- Material: steel, org. scint., fibers, SiPM
- # **SiPM**: 600
- **Channels**: 600
- **Modular design**: can be extended to a full 2π object
- To demonstrate performance, scalability and cost-effectiveness

Detector prototype at INFN-LNL

Detector prototype at INFN-LNL

ENUBET

- ERC project started in 2016-2022;
- CERN experiment (NP06) within Neutrino Platform 2019-2024;
- > part of **Physics Beyond Collider** framework

Final design of beam transfer line in place:

- static transfer line: 10⁴ events in 2/3 years (@ SPS)
- > optimization of transfer line parameters with dedicated framework in progress

Detector simulation and **PID** studies done:

- developed full GEANT4 simulation of calorimeter
- finalizing waveform to fully assess the pile-up effects
- very good PID performance achieved

Design of **decay tunnel** instrumentation **finalized**:

- prototypes test-beams @ CERN: technology validation;
- building final demonstrator to be tested @ PS East Hall in October 2022

First monitored neutrino beam for v cross-section **measurements @ O(1%)**

2023-2024 delivery of Conceptual Design Report with physics and costs definition

Experimental proposal expected in 2024

Thank you for your attention!

Readout chain

one module of the **to layer**

three calorimeter **layers**

1 radial segment = 5 channels

Layer	Number of channels
Photon-veto (t0)	145600
Calorimeter 1 (calo1)	72800
Calorimeter 2 (calo2)	72800
Calorimeter 3 (calo3)	72800

R&D read-out system

Read-out system includes a large number of steps from SiPM to saved signal **Developed electronics and software** for reading the signal from the detector Possible digitizer **sampling time: 1ns** (1000MS/s), **2 ns** (500MS/s), **4 ns** (250 MS/s)

- Develop a **digitizer** with a **cost**efficiency trade-off
- Develop an **algorithm for finding** the **amplitude** and absolute **time** of a signal to **compress** the saved **data**
- Trigger less data saving

Photo from the INSULAB tests 2021

Particle hit rate

Rate vs Z - T0 - E>0.4 MeV

- **not all** the particles will **hit the detector**
- Entrance spectra peak is 8.5 GeV/c
- all K⁺ have decayed
- Different particles have different momentum spectra
- Muons, photons and pions have the highest frequency of hits
- Hit rate on channel depends on layer
- On the plots **low-energy cut** (E>0.4 MeV)
- Average hit rates on channel are 1.5 MHz

The peak detection algorithm results

Efficiency as a function of the **signal-to-noise ratio** in the selection of Ke3 events

- The red line refers to the GEANT4 simulation energy deposits
- The green line refers to the detected by the PD algorithm energy deposits

Dumps

Low-E ν_{μ} from π decays can be constrained by monitoring associated $\mu \rightarrow$ emitted at a small angle

 \rightarrow **go through** the tunnel and the **h-dump** \rightarrow **Instrumented h-dump**: detector layers interleaved by the absorber **Hadron dump**: graphite core (50 cm d), inside a layer of iron (1 m d), covered by borated concrete (4 m d) + 1 m of borated concrete is placed in front of the hadron dump leaving the opening for the beam \rightarrow design optimized to reduce the

backscattering

Proton dump: 3 m long graphite core, surrounded by aluminium, covered by iron

• Nominal SPS 4.5 10¹⁹ POT/year

- 500 ton neutrino LAr detector located 50m from the tunnel
- **10⁴ v**e **CC** in about **2 years**
- 73.5% of the total ve flux generated inside the tunnel
- more than 80% above 1 GeV

Narrow-band Off-axis Technique

- Strong correlation between Ev in the detector and the radial distance (R) of the interaction vertex from the beam axis
- Total 4 10⁵ ν_μ CC, assuming 4.5 10¹⁹ POT
- Loose energy cut enough to separate π/K component

Beam line particle yields

Advantages of the horn(fast) extraction:

- Increase the number of kaons that possible to focus
- Would **take less** to do a measurement (if ENUBET manage to sustain the pile up)

Advantages of the static(slow) extraction:

- No need for fast-cycling horn
- Strong **reduction of the rate** (pile-up) in the instrumented decay tunnel

v_µ and v_e physics performance

E (v_) (GeV)

- V_{μ} from K and π are well separated in energy;
- Since the momentum bite is <10% and the detector distance is small, there is a strong **correlation** between the **position** of the neutrino vertex and its **energy**
- Technique dubbed "narrow-band off-axis"
- V_e and V_{μ} from K are **constrained** by the tagger measurement (K_{e3}, mainly K_{µ2});
- Assumption: 500 ton LAr neutrino detector (6x6 m2) @ 50 m from dump

1.2 million v_{μ} Charged Current per year

v_µ **CC** events. Narrow band beam

ENUBET @ SPS, 400 GeV, 4.5e19 pot, 500 ton detector

The neutrino E is a function of the distance of the neutrino vertex from the beam axis.

- 8 % for r ~ 50 cm, <Ev>~ 3 GeV
- 22% for r ~ 250 cm, <E_v> ~ 0.7 GeV