Towards the implementation
of the ENUBEI neutrino cross
section experiment at CERN

A:.Meregaglia (LP2l-Bordeaux)

On behalf of the ENUBET collaboration

34t Rencontres de Blois - Blois - 18th May 2023



INtroduction

Neutrino oscillation physics has moved from discovery to
precision era, and next generation experiment such as DUNE and
Hyper-Kamiokande aims at measuring the oce phase to assess a
possible CP violation in the leptonic sector.

The sensitivity of future experiments is- mostly limited by the
systematics related to the cross sections knowledge, which are
known today with an error at the level of 10 to 30%.

The available measurements of cross sections are in turn dominated
by the uncertainty on the neutrino flux which is generally at the level
of 10%.

As stated in the European Strategy for Particle Physics Deliberation
document, “To extract the most physics from DUNE and Hyper-
Kamiokande, a complementary programme of experimentation to
determine neutrino cross-sections and fluxes Is required.”
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ENUBET is a development on the beam side for a strong reduction of the

systematics related to the flux and cross section knowledge to reach a
precision at the level of 1% on the neutrino cross section
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ENUBET:; the first monitored neutrino beam

7+ and w decay at small angles A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155
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=  ENUBET (Enhanced NeUtrino BEams from kaon Tagging) is the project for the realization of the first
monitored neutrino beam. It IS a conventional beamline with an instrumented decay tunnel to measure
the neutrino flux directly counting the leptons.

= \With the proposed approach most systematics contributions are avoided: hadron production, beam line
geometry and focusing, and protons on target.

» ERC project (2016-2022): measurements of positions from Kes decays (K+ = nt0 e+ ve) in the instrumented
decay tunnel to determine the ve flux.

=  CERN experiment NP0O6 since 2019: extend measurement in the decay tunnel to u from K,, and replace
the hadron dump with a muon range meter to measure n from m,, to determine the v,, flux.
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ENUBE I: the collaboration

17 institutes from 6 countries

<R

Istituto Nazionale di Fisica Nucleare Bord eaux

Official web page

https://www.pd.infn.it/eng/enubet/
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Beamline

»  (Claiming an overall systematic budget <1% requires an end-to-end simulation of the
neutrino beamline. Such simulation work has been carried out based on CERN-SPS.

= [he first option was based on standard horns with slow extraction rate to avoid pile-up
and saturation of the instrumentation in the tunnel.

with 10ms pulse every 100ms
achieved at CERN SPS in 2018
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x [he 2020 design is based on the “static focusing system” obtained using dipoles and
quadrupoles for a continuous extraction in 2 seconds.

= [he design was successful resulting In a reduction of the neutrino flux by a factor of 2 but
with protons extracted on a much larger timescale, reducing therefore the pile-up by more
than one order of magnitude.
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Beamline (2)

» [he 14.8 degrees large bending helps reducing muons background and v, from early decays.

= [he transfer line was optimized with G4Beamline to have a narrow band beam (asking for 5% momentum
bite centered at 8.5 GeV/c) to study particle transport and interactions.

= [he length of the transfer line (26.7 m) is optimized to reduce the K decays (loss of 30%).

= The optimization included the graphite target (70 cm long and 3 cm radius), the different absorbers, in
particular the 5 cm tungsten foil downstream (to reduce the positrons background).

»  FLUKA was used to study the irradiation of the different elements and to evaluate the hadron production from
protons on target

= [he two dumps (graphite, aluminium and- iron layers) were optimized to avoid backscattering flux in the
tunnel.

Transfer line
Normal conducting magnets
Quadrupoles + 2 dipoles (1.8 T,
total bending of 14.8 degrees)
« Short (20 m) to minimize early K

Tagger (decay tunnel)
40 m long _ Hadron dump
1 m radius ’

decays

Proton dump
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Neutrino beam: ve CC

= Assuming a 500 t detector (such as Protodune-SP/DP@CERN) at 50 m from the end of the tunnel, the
SPS as accelerator with 4.5 x 1019 p.o.t. per year, we expect a statistics of 104 ve CC in about 2 years.

= For neutrinos with energy above 1 GeV, 80% of the ve is produced by decays in the tunnel and it can
therefore be monitored.

= [he component below 1 GeV comes from the proton dump and it can be easily discarded with an energy
cut.

= [he unmonitored component above 1 GeV is due to elements before the tagger and from the hadron
dump and the knowledge of such a component is based on the simulation.
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Neutrino beam: v, CG

»  Assuming a 500 t detector (such as Protodune-SP/DP@CERN) at 50 m from the end of the tunnel, the
SPS as accelerator with 4.5 x 1012 p.o.t. per year, we expect a statistics of 106 v, CC in about 2 years.

= \With the narrow band off axis technique we have a strong correlation between the neutrino energy E,
and the radial distance of the interaction vertex from the beam axis R.

= A precise determination of Ey can be obtained without relying on the final state particles in v, CC interactions.
= 8-25% E, resolution from mt in DUNE energy range.
= 30% E, resolution from st in HyperK energy range (transfer line optimized for DUNE with 8.5 GeV beam)

= (Ongoing R&D for optimization of multi momentum beam line (4.5, 6 and 8.5 GeV) for DUNE and HK.

ENUBET @ SPS, 400 GeV, 4.5e19 pot, 500 ton detector
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Decay tunnel iInstrumentation

The concept of the tagger is based on 3 layers of longitudinally segmented calorimetric modules for a et/at/
ut separation, and a photon veto.

Shielding

- 30 cm of borated polyethylene.
« SiPMs on top (reduction of a

factor of 18 in neutron flux). Calorimeter layout

Calorimeter

- Three radial layers of Lateral readout Calorimetric Modules (LCM).

- Sampling calorimeter: each LCM is a sandwich of 5 x 0.7 cm plastic
scintillator interleaved with 5 x 1.5 cm of iron absorber.

« Each LCMis 3 x 3 x 11 cm3 (4.3 Xo).

 The scintillation light is extracted with 30 cm WLS fibers to SIPMs.

u™ (signal/bkg) topollo6gy

e* (signal) topology n (background) topology " (background) topology

Photon veto

+ Plastic scintillator tiles arranged in
doublets forming inner rings. i
» Time resolution of about 400 ps. e 00
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| epton reconstruction

» A full GEANT4 simulation of the detector has been developed.

= [he simulation was validated on prototype tests at CERN between 2016 and 2018.

= Pile-up effects are included (waveform treatment in progress).
=  Event building and PID algorithms have been developed between 2016 and-2020.

= [he events are selected searching for patterns (space and time) compatible with large angle positrons
(electromagnetic showers) or muons (straight tracks).

= [he PID is carried out using a MLP-NN based on a set of discriminating variables (energy deposited,
topology and photon veto).
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Forward lepton reconstruction

= [he measurement of ;2 muons would allow to constrain the low energy v,.

= | ow angle muons are out of the tagger acceptance and needs muon stations after the hadron dump to be
observed.

= [he constraints come from muon rate (about 2 MHz/cm?2) and radiation hardness (about 1012 1 MeV-neg/Cm2).

Muon energy @ different u-stations Neutrino energy @ different u-stations

»  [he correlation between the number
of traversed stations (muon energy
from range-out) and neutrino energy
can be exploited.
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Flux systematics

= Monitoring leptons and fitting the observable using a model of signal plus background allows to reduce the
hadro-production uncertainties on the neutrino flux.

= \Without constraints given by the lepton measurement the error on the neutrino flux is at the level of 6%.

= Using the lepton observable the error goes down to about 1% showing therefore that the goal of ENUBET
of 1% on the systematics can be reached.

Neutrino interaction rates @ detector Pre & Post fit relative errors on rates
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ENUBET demonstrator

» A section of the decay tunnel was built and
tested at CERN in October 2022.

L

= /5 layers 1.5 cm thick iron and 7 mm scintillator
tiles.

= 10 sectors in ¢ are instrumented (18 degrees).

= New light readout tested with frontal grooves
instead of lateral ones.
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Possible implementation at CERN

» \We would like to propose a short baseline beam experiment at CERN in 2029 (Run 4 of LHC in parallel
with DUNE and HyperK).

= T[his could be done in the CERN North Experimental Area possibly exploiting the ProtoDUNE-SP and
ProtoDUNE-VD detectors.

» A dedicated extraction line in the North Area would be the cheapest and easiest solution however
interference with existing  experiment and radiations: could lbe an issue. Alternatively a new dedicated
extraction line could be considered.
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Conclusions

=  Monitored neutrino beams are a reality: the proof of concept is almost.complete and NPO6/ENUBET has
demonstrated it both by simulation and experimental validation.

= A monitored neutrino beam would be a critical asset for next generation of cross section experiments.

= The ERC project is over (final design concept paper in preparation) and we have started the process of
addressing the real implementation at CERN and aim at a proposal in 2024-2025 to be in data taking for
LHC Run IV (2029).

= This is a major effort that requires:
= Careful assessment of physics performance.

= Assets and limitations for the use of ProtoDUNE (e.g. cosmic rejection in a slow extraction, kinematic
reconstruction of final states, etc.).

= Optimal location at CERN to exploit the SPS slow extraction.

= \We are trying to create consensus in the neutrino community to move on to the next phase, to have the
experiment up and running in parallel with DUNE and HyperK.
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