

The ENUBET monitored neutrino beam and its implementation at CERN

*Leon Halić** on behalf of the NP06/ENUBET Collaboration

NuFact 2024, Argonne, USA

^{*}Ruđer Bošković Institute, Zagreb, Croatia

ENUBET - Motivation

Accelerator based neutrino experiments have moved from statistics- to the systematics-dominated era

$$\frac{d^2 N}{dEdt}(E_{\nu}) = P(\nu_{\mu} \to \nu_{e}) \Phi(E_{\nu}) \sigma(E_{\nu}) \epsilon(E_{\nu})$$

Knowledge of neutrino interaction cross section and neutrino flux dominate the final systematic uncertainty of the experiment

> Neutrino cross section uncertainty is stuck at 10-30% level, while the community needs are closer to 1% cross section uncertainty

ENUBET – What is needed?

Measure neutrino flux of neutrino cross section experiments to a precision of <1% for both v_e and v_u – generally known at 10%

Measure neutrino energy without relying on the final state – no biases coming from nuclear reinteractions

Use the most common target material used in long baseline neutrino experiments – water and liquid argon

Monitored beams are beams with unprecedented control over neutrino flux and offer precision on the flux of <1%

Monitored narrow-band neutrino beams can measure neutrino energy a-priori by using the narrow-band off-axis technique – O(10%) precision

ProtoDUNE (LAr) and **WCTE (H₂O)** at CERN provide a perfect opportunity to act as neutrino detectors for a monitored neutrino beam

Enhanced Neutrino Beams from kaon Tagging

F. Acerbi¹, I. Angelis²¹, L. Bomben^{2,3}, M. Bonesini³, F. Bramati^{3,4}, A. Branca^{3,4}, C. Brizzolari^{3,4}, G. Brunetti^{3,4}, M. Calviani⁶, S. Capelli^{2,3}, S. Carturan⁷, M.G. Catanesi⁸, S. Cecchini⁹, N. Charitonidis⁶, F. Cindolo⁹, G. Cogo¹⁰, G. Collazuol^{5,10}, F. Dal Corso⁵, C. Delogu^{5,10}, G. De Rosa¹¹, A. Falcone^{3,4}, B. Goddard⁶, A. Gola¹, D. Guffanti^{3,4}, L. Halić²⁰, F. Iacob^{5,10}, C. Jollet¹⁶, V. Kain⁶, A. Kallitsopoulou²⁴, B. Kliček²⁰, Y. Kudenko¹³, Ch. Lampoudis²¹, M. Laveder^{5,10}, P. Legou²⁴, A. Longhin^{a,5,10}, L. Ludovici¹⁵, E. Lutsenko^{2,3}, L. Magaletti^{8,14}, G. Mandrioli⁹, S. Marangoni^{3,4}, A. Margotti⁹, V. Mascagna^{22,23}, N. Mauri⁹, J. McElwee¹⁶, L. Meazza^{3,4}, A. Meregaglia¹⁶, M. Mezzetto⁵, M. Nessi⁶, A. Paoloni¹⁷, M. Pari^{5,10}, T. Papaevangelou²⁴, E.G. Parozzi⁴, L. Pasqualini^{9,18}, G. Paternoster¹, L. Patrizii⁹, M. Pozzato⁹, M. Prest^{2,3}, F. Pupilli⁵, E. Radicioni⁸, A.C. Ruggeri¹¹, G. Saibene^{2,3}, D. Sampsonidis²¹, C. Scian¹⁰, G. Sirri⁹, M. Stipčević²⁰, M. Tenti⁹, F. Terranova^{3,4}, M. Torti^{3,4}, S.E. Tzamarias²¹, E. Vallazza³, F. Velotti⁶, L. Votano¹⁷

ENUBET – A monitored neutrino beam

ERC Project (2016-2022)

Aim: Measure positrons from K_{e3} decay (in tunnel) to determine the v_e flux

 $\mathrm{K}^+ \to \pi^0 + e^+ + \nu_e$

CERN Neutrino Platform (2019-present)

Aim: Extend measurement to antimuons from $K_{\mu 2}$ (in tunnel) and $\pi_{\mu\nu}$ (in dump) decays to determine v_{μ} flux

$$\pi^{\pm}
ightarrow \mu^{\pm} + \overline{
u}_{\mu} \quad \mathrm{K}^{\pm}
ightarrow \mu^{\pm} + \overline{
u}_{\mu}$$

erc

ENUBET – Challenges & Solutions

16-Sep-24

Conventional neutrino beams with fast extractions and a horn system lead to a large pile-up and saturation of the instrumentaion in the decay tunnel – we need a slow extraction system

ENUBET uses a completely static focusing system where focusing at 8.5 GeV/c is acommplished by quadrupoles

This design achieved a flux that is just 2 times smaller than hornbased design, but using a 2 second proton extraction time!

ENUBET – Challenges & Solutions

Transfer Line

- Normal conducting magnets
- Quadrupoles + 2 dipoles
 - (1.8 T, total bending angle 14.8°)
- Short (<30 m) to minimize K decays
- Small beam size

3m

ENUBET – Decay tunnel instrumentation

Photon & π^0 Veto

Plastic scintillator tiles forming the inside ring

Calorimeter

Plastic scintillator and iron interlayered 3 radial layers WLS fibers to SiPM for light collection

Hadron dump instrumentation

Muon stations to monitor muons from pion decays which have low scattering angle (misses decay tunnel walls)

ENUBET – The Demonstrator

Specifications

- 1.65 m long, π/4 coverage
 - Scintillator tiles: 4335
 - WLS fiber: 4.5 km
 - SiPM channels: 1275
- 64ch boards (CAEN A5202): 22

ENUBET – Beamtests

Beamtests were performed in 2022, 2023 and 2024

Data from all these are in analysis – publication in coming months

ENUBET – Beam design and performance

CERN SPS proton driver with 400 GeV protons and 2 s spill

Detector baseline is 50 m with 500 t target mass

ENUBET – Beam design and performance

Full **GEANT4 simulation** of the instrumented decay tunnel – validated by prototype tests at CERN

Large angle positrons and muons from K decays reconstructed by searching for patterns in E_{dep} in tagger

Signal identification done using a Neural Network trained on a set of discriminating variables

ENUBET – Determination of neutrino flux

To establish the flux precision, we performed the same systematic assessment analysis performed by experiments like Minerva or T2K

Dominant systematic extracted from experimental data (NA56/SPY) – 6% uncertainty on flux

Rate, position and energy distribution of positrons from K decays measured in the tunnel used as a prior

ENUBET – A priori measurement of neutrino energy

Possible only for v_{μ} coming from $K_{\mu 2}$ decays

Narrow-band off-axis technique

When the beam has narrow momentum, O(5-10%), neutrino energy and radial distance of interaction vertex are strongly correlated

No need to rely on final state particles from v_{μ} CC interactions

10-25% E_v resolution from π decays in the DUNE energy range

Limitations of the current ENUBET design

- Facility optimized for DUNE, but we want to cover also lower energies
- Number of POT is too high to run ENUBET @ CERN in parallel with SHiP
- Inadequate statistics at low energy, especially below 2 GeV

Short-Baseline Neutrinos @ Physics Beyond Colliders – SBN@PBC Proposal under study by CERN, ENUBET, NuTAG and the CERN Neutrino Platform to address such limitations and set the ground for the next generation of cross section experiment

Preliminary results of beamline from SBN@PBC

- Can run at lower secondary momenta (4-8.5 GeV/c)
- Achieves ENUBET performance with 33% of the POT needed in the original design
- Collects large ν_μ statistics in the 1-2 GeV range
- Improved E_v resolution by measuring parent momentum and exploiting time tagging

Time Tagged Neutrino Beam

Matching detected neutrinos with corresponding detected charged leptons in the instrumented decay tunnel

Time coincedence between neutrino event in the detector and lepton event in the tagger

Even better tagging by introducing the NuTAG concept – silicon trackers in the beamline to monitor the neutrino parent

Expected E_v resolution: 1%

ENUBET – Summary

Monitored neutrino beam is not longer an interesting idea, it is now a matured technology

We can measure the charged leptons in a decay tunnel using a horn-less beam

- DUNE energy range (ENUBET)
- DUNE + Hyper-Kamiokande energy range (SBN@PBC)
 - ESSnuSB energy range (ESSnuSB+)

ENUBET design fulfills all requirements for a new generation of cross section experiments

- Statistical error <1% with a 500 ton detector
 - Flux systematic uncertainties <1%
- Estimate of the neutrino energy with 10-25% precision

Moving towards an experimental proposal for implementation at CERN using ProtoDUNE and/or WCTE

Common effort of ENUBET, NuTAG, and CERN to overcome current limitations and exploit time tagging

Backup Slides

ENUBET – Challenges & Solutions

- Particle rate at the tunnel: below 100 kHz/cm² using a hornless beam
- Radiation dose at the tunnel detector well below 10 Gy and 10^{11} n/cm²

Length - 40 meters Radius – 1 meter

Simulation

17-Sep-24

- 5% momentum bite centered at 8.5 GeV, optimized with TRANSPORT
- G4Beamline used to simulate particle transport
- FLUKA used for irradiation studies

ENUBET – Hadron dump instrumentations

 $\pi_{\mu 2}$ muon reconstruction to constrain low-energy v_{μ}

ENUBET – Demonstrator construction

EJ-204 scintillator tiles – grooves for WLS fibers Tile painting (EJ-510 / TiO₂ painting)

Tiles assembling and fibers routing

A. Branca

ENUBET – Narrow-band off-axis technique

