

The ERC ENUBET Project: high precision neutrino flux measurements in conventional neutrino beams

F. Pupilli (INFN-Padova) on behalf of the ENUBET collaboration

ENUBET (Enhanced NeUtrino BEams from kaon Tagging)

A new-concept v_e source based on tagging of e⁺ from K⁺ \rightarrow e⁺ $\pi^0 v_p$ decays

• The goal of the project is to demonstrate the feasibility of real time monitoring of the positrons produced at high angle in the decay tunnel of conventional neutrino beam to obtain a 10x reduction in the systematics on the neutrino flux \rightarrow Highly beneficial for the **leptonic CP violation** international program at long baselines $(v_{\mu} \rightarrow v_{e})$.

- ENUBET is a ERC Consolidator Grant-2015 project (n. 681647, P.I. A. Longhin) with a 2 MEUR funding started on 01/06/2016 with a 5 years duration.
- An Expression of Interest was recently submitted to CERN-SPSC [2]

 $O(10^4) v_{\rho}^{CC}$ in a few years of run at existing proton drivers with a 500 t scale detector [1]

A traditional beam

- **Passive** decay region
- v_e flux relies on **ab-initio** simulations of the full chain \leftrightarrow
- large uncertainties from model dependency

The tagged beam

- Fully instrumented decay region $K^+ \rightarrow e^+ v_{\rho} \pi^0 \rightarrow \text{large angle } e^+$
- v_e flux prediction = e^+ counting

• Hadron beam-line: collects, focuses, transports K⁺ to the e⁺ tagger • e⁺ tagger: real-time, "inclusive" monitoring of produced e⁺

The positron tagger

- > Challenges
- The decay tunnel:
- a harsh environment
- particle rates: > 200 kHz/cm²
- backgrounds: pions from K⁺ decays Need to veto 98-99 % of them
- extended source of ~ 50 m
- grazing incidence

1) compact calorimeter with longitudinal segmentation

 \mathbf{K}^+

UCM

2) integrated γ -veto

- Key point:
 - longitudinal sampling perfect homogeneity
 - \rightarrow integrated light-readout

Adopted solution

replaced by active

instrumentation

Conventional beam-pipe

- **1)** Calorimeter ("shashlik") $\rightarrow \pi^{\pm}$ rejection
- Ultra-Compact Module (UCM) read-out by SiPM directly coupled to WLS fibers
- $\rightarrow \pi^0$ rejection 2) Integrated γ -veto
 - plastic scintillators or
 - large-area fast avalanche photodiodes

Full tagger GEANT4 simulation	Ą	12 Signal (test sample)	Signal (training sample)
	Ň	Background (test sample)	 Background (training sample)

significant spread in the initial direction

proton "time-dilution" \rightarrow t-coincidences between e⁺ and v_e at the detector

Bruno Pontecorvo

Preliminary results: • e⁺ efficiency: ~ 49% • π^+ rejection: ~ 97% (Neural Network) • π^0 rejection: ~ 99% (Sequential cuts)

ENUBET final results:

• 1) e⁺ tagger validated with particle beams data • 2) a detailed design for the **hadron beam-line**

The complete picture to move to a full scale experiment

By-products and cross-fertilization:

- calorimetry → new low-cost, ultra-compact detectors
- accelerator physics solutions → novel proton extraction schemes for fixed-target and beam-dump experiments

Prototype dimensions: $3 m \times \pi$ 60 cm outer radius

WLS |

References, additional info http://enubet.pd.infn.it [1] Eur. Phys. J. C (2015) 75:155 A novel technique for the measurement of the electron neutrino cross section A. Longhin, L. Ludovici, F. Terranova [2] CERN-SPSC-2016-036 ; SPSC-EOI-014 **Enabling precise measurements of flux in** accelerator neutrino beams: the ENUBET project **ENUBET** Collaboration [3] N.I.M. A, 2016.05.123 arXiv:1605:09630 A compact light readout system for longitudinally segmented shashlik calorimeters Energy [GeV] A. Berra^{a,b,*}, C. Brizzolari^{a,b}, S. Cecchini^c, F. Cindolo^c, C. Jollet^d, A. Longhin^e, L. Ludovici^f, G. Mandrioli^c, N. Mauri^c, A. Meregaglia^d

A. Paoloni^e, L. Pasqualini^{c,g}, L. Patrizii^c, M. Pozzato^c, F. Pupilli^e,

M. Prest^{a,b}, G. Sirri^c, F. Terranova^{b,h}, E. Vallazzaⁱ, L. Votano^e

Prepared by F. Pupilli (INFN-Padova, fabio.pupilli@pd.infn.it) for the NuPhys 2016: Prospects in Neutrino Physics Conference – London 12-14 December 2016