The ENUBET monitored neutrino beam:

moving towards the implementation of a high precision cross section experiment at CERN

F. Pupilli (INFN – Padova)

Istituto Nazionale di Fisica Nucleare

on behalf of the ENUBET Collaboration

ERC Consolidator grant

(P.I. A. Longhin - 2016-2022)

CERN Neutrino Platform Experiment (NP06 - 2019-2024)

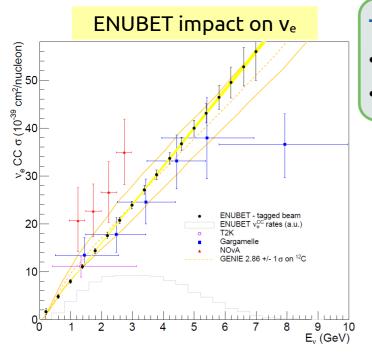
Part of the Physics Beyond Colliders (PBC) initiative

72 physicists 15 institutions

https://www.pd.infn.it/eng/enubet/

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

The role of cross sections in the precision era



Full exploitation of data from future oscillation programs (DUNE, Hyper-K) strongly dependent on the control of **systematics**

- \rightarrow statistics not an issue (large θ_{13} , superbeams, huge mass)
- → the well known near-to-far ratio technique challenged by the required precision:
 - · difference in angular acceptance
 - large pile-up effects at ND
 - different detector technology for the two sites

Fundamental a better knowledge of $\sigma_{_{V\mu}}$ and $\sigma_{_{ve}}$

The goal of ENUBET: design a narrow-band neutrino beam to measure

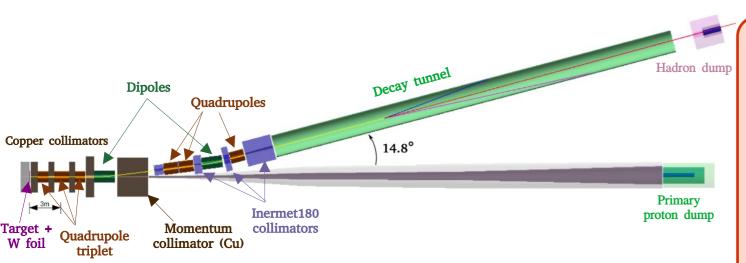
- neutrino flavor composition and cross-section at 1% precision level
- neutrino energy at 10% precision level

From the European Strategy for Particle Physics Deliberation document:

To extract the most physics from DUNE and Hyper-Kamiokande, a complementary programme of experimentation to determine neutrino cross-sections and fluxes is required. Several experiments aimed at determining neutrino fluxes exist worldwide. The possible implementation and impact of a facility to measure neutrino cross-sections at the percent level should continue to be studied.

ENUBET: the first monitored neutrino beam

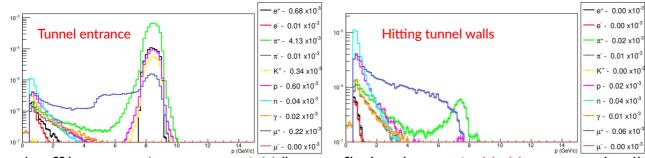
Hadron production, beamline geometry and focusing, POT


- → ERC project focused on the determination of the v_e flux by measuring K_{e3} positrons
- NP06 CERN project extended the measurement to muons from K and π to fully monitor the ν_{μ} flux

The ENUBET beamline

new paper! arXiv:2308.09402 [hep-ex]

Fully static focusing (by quadrupole triplet) \Leftrightarrow coupled to slow proton extraction (assuming 4.5x10¹³ – 400 GeV pot in 2 s)



Large bending angle of 14.8°:

• Better collimated beam + reduced muon background + reduced ν_{e} from early decays

Transfer line design:

- optics optimized with TRANSPORT for mesons with p=8.5 GeV/c \pm 10% (narrow-band beam)
- · particle tracking and interactions simulated with G4Beamline
- doses and irradiation studies with FLUKA, absorbers and rock volumes included
- optimized graphite target 70 cm long, 6 cm diameter (dedicated studies on geometry and materials)
- tungsten foil after proton target to suppress positron background
- tungsten alloy (Inermet 180) @ tagger entrance to suppress backgorund

Trade-off between a large meson yield (larger v flux) and a sustainable bkg on tunnel walls

Transfer line

- Normal conducting magnets
- quadrupoles + 2 dipoles
 (1.8 T, total bending angle of 14.8°)
- kept short (26.7 m) to minimize early K decays
- Small beam spot at tunnel entrance

Decay tunnel

- Length of 40 m
- Radius of 1 m

Full facility implemented in GEANT4:

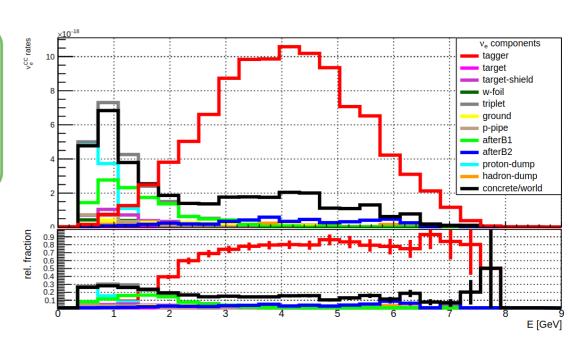
- Collimator optimization with genetic algorithm framework
- Control over all parameters
- Access to particle histories

Assessment of the v flux systematics

Rates @ tunnel entrance (8.5 GeV/c ±10%)		
π⁺ [10 ⁻³]/pot	K+ [10 ⁻³]/pot	
4.6	0.4	

F. Pupilli HEP-EPS - 23/08/2023

v_e^{CC} spectrum @ detector



Assumptions:

- @ SPS (400 GeV) with 4.5x10¹⁹ pot/year
- 500 tons LAr ν-det (6x6 m²) @ 50 m from h-dump
- \rightarrow 10⁴ ν_e^{CC} interactions in ~2.3y of data taking

Taggable component:

About 70% of total v_e^{cc} is produced by decays in the tunnel (above 1.5 GeV)

Non-taggable components:

- Below 1.5 Gev: main component produced in p-dump and focusing triplet region
 - clear separation from taggable ones (energy cut)
 - further improvements optimizing p-dump position
- Above 1.5 GeV: contributions from straight section before instrumented decay tunnel and h-dump
 - rely on simulation for this component

v_{μ}^{cc} spectrum @ detector

~7x105 ν_{μ}^{CC} interactions in ~2.3y

Narrow-band beam

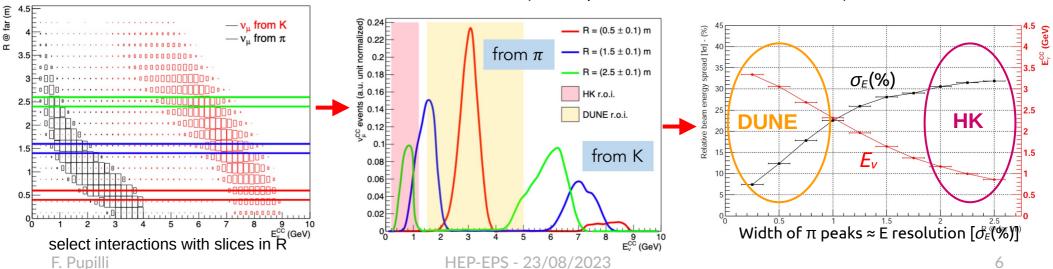
Two distinct populations:

- v_{μ} from π at E_{ν} <4GeV
- v_{μ} from K at E_{ν} >4GeV

Narrow-band off-axis technique

Narrow momentum beam O(5-10%)

 (E_{ν},R) strongly correlated


- Ε_ν = neutrino energy
- R = radial distance of interaction vertex from beam axis

A-priori precise determination of E_v

no need to rely on the reconstruction of the $\nu_{\mu}{}^{\text{CC}}\text{-int}$ final state

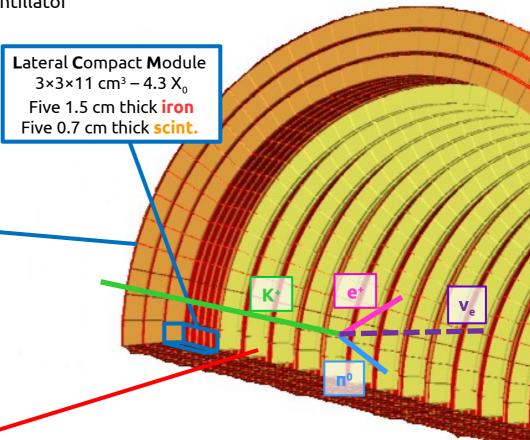
- 8-25% E_{ν} resolution in the DUNE energy range
- 30% E_{ν} resolution in Hyper-K energy range (DUNE optimized TL \rightarrow 8.5 GeV meson beam)

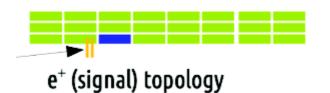
The instrumented decay tunnel (tagger)

Requirements:

- Allow $e^{+}/\pi^{\pm,0}$ separation in the GeV energy region
- Suppress background from beam halo (μ, γ, non collimated hadrons)
- Sustain O(MHz) rate and **suppress pile-up effects** (recovery time ≤ 20 ns)
- **Doses**: <10¹⁰ n/cm² at SiPMs, 0.1Gy at scintillator

Calorimeter

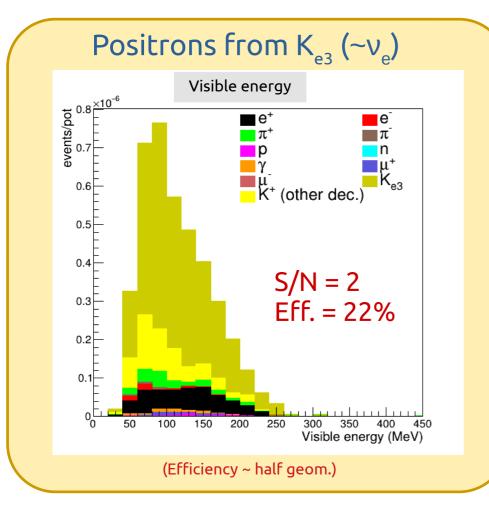

- Longitudinal segmentation
- Plastic scintillator + Iron absorbers
- Lateral light readout with WLS+SiPM

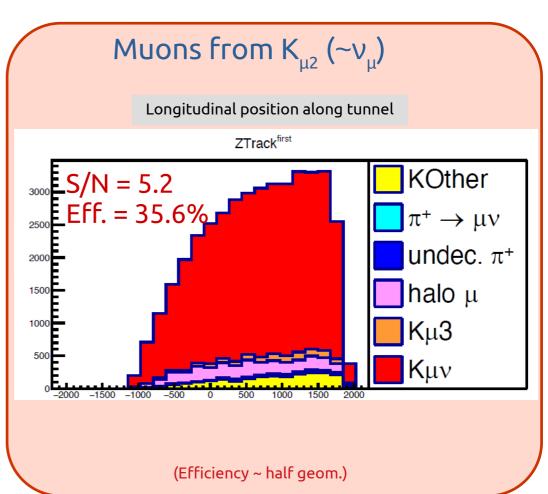

 \rightarrow e⁺/ π [±]/ μ separation

Integrated photon veto (t0-layer)

- Plastic scintillators
- Rings of 3×3 cm² pads readout by SiPM

 $\rightarrow \pi^0/\gamma$ rejection

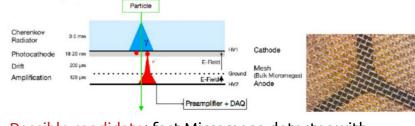

π⁰ (background) topology



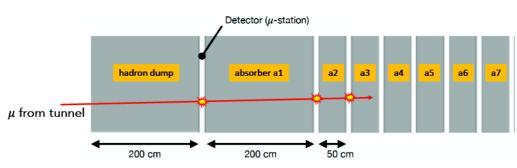
Lepton identification (I)

- ✓ Full GEANT4 simulation of the detector: validated by prototype tests @ CERN; hit-level detector response; pile-up effects included (waveform treatment in progress); event building and PID (2016-2020)
- Large angle muons and positrons from kaon decays identified exploiting the energy pattern in the tagger
- Event selection based on 19 discriminating variables for positrons (13 for muons) employed by a Neural Network

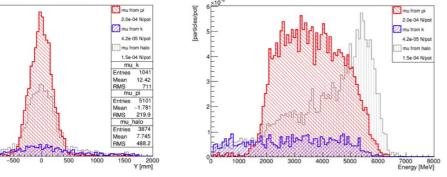
 K_{e3} BR ~5% and K make ~5-10% of beam composition


F. Pupilli et al, PoS NuFact2021 (2022), 025

Lepton identification (II)

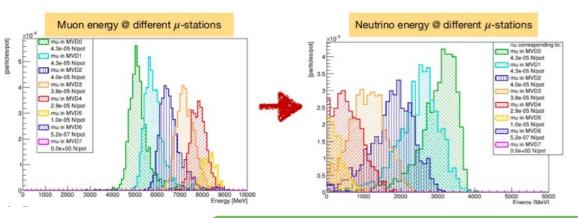


 $\pi_{_{\!\mu2}}$ muon reconstruction to constrain low energy $\nu_{_{\!\mu}}$


- Low angle muons: out of tagger acceptance
- → need muon stations after the hadron dump

Possible candidate: fast Micromega detector with Cherenkov radiator (~30 ps time res)

Exploit differences in distributions to disentangle components


Hottest detector (upstream station): cope with ~2 MHz/cm² muon rate and 10¹² 1 MeV-n_{ed}/cm²

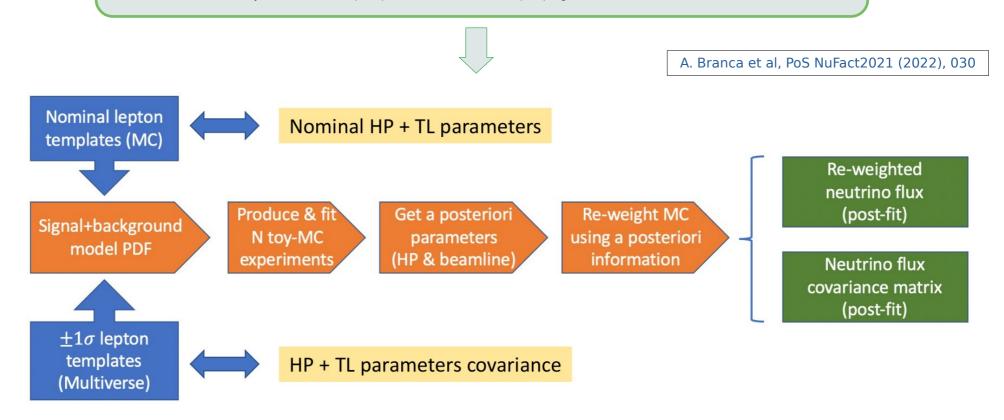
Exploit:

- Correlation btw number of transversed stations (μ energy from range-out) and ν energy;
- Difference in distribution to disentangle signal from halomuons

Detector technology: constrained by muon and neutron rates

Systematics: punch through, non uniformity, efficiency, halo-µ

Work in progress

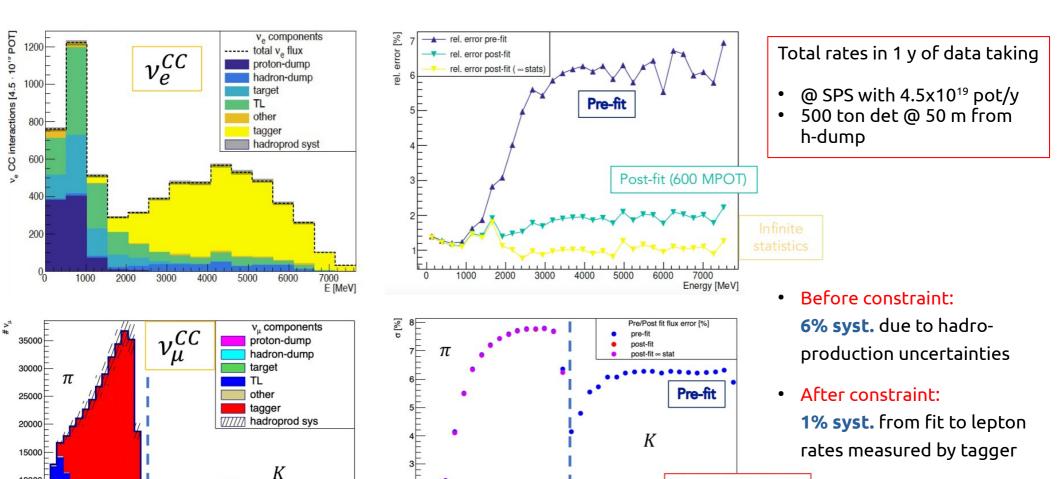

PIMENT: PICOSEC Micromegas Detector for ENUBET

v-flux: assessment of systematics

Monitored neutrino beam: measure rate of leptons \iff monitor ν flux

- build a Signal + Background model to fit lepton observables
- include hadro-production (HP) & transfer line (TL) systematics as nuisances

Used hadro-production data from NA56/SPY experiment to:


- reweight MC lepton templates and get their nominal distributions
- · compute lepton templates variations using multi-universe method

v-flux: impact of hadro-production systematics

Neutrino interaction rates @ detector

Pre- & Post-fit relative errors on rates

Achieved ENUBET goal of 1% systematics from lepton rates monitoring

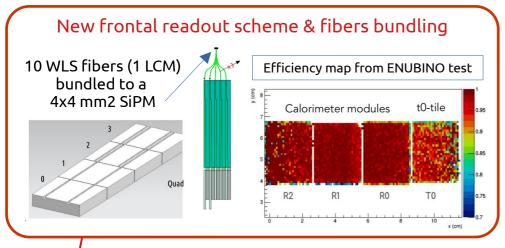
Infinite

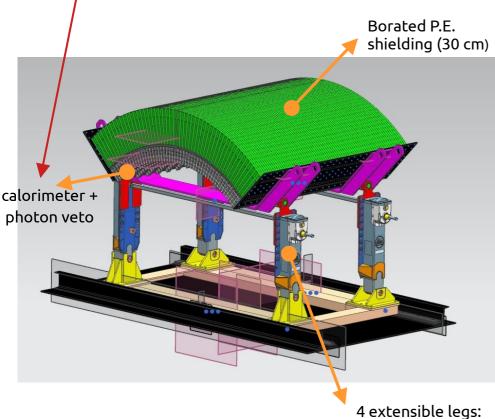
statistics

Post-fit (600 MPOT)

4000

10000


E [MeV]


10000

5000

The tagger demonstrator

- Large scale detector prototype to demonstrate:
 - → Performance / scalability / cost effectiveness

Test beam @ CERN-PS in october 2022 and August 2023

- 1.65 m longitudinal & 90° in azimuth (central 45° instrumented)
- 75 layer of: iron (1.5 cm thick) + scintillator (0.7 cm thick) → 15x3x25 LCMs
- Modular design: can be extended to a full 2π object by joining 4 similar detectors (minimal dead regions)
- Scintillators: produced by SCIONIX (EJ-204) and milled by local company
- New lateral readout scheme with frontal grooves instead of lateral ones:
 - driven by large scale scintillator manufacturing: safer production and more uniform light collection
 - validated by GEANT4 optical simulation
- SiPM installed outside calorimeter, above BPE shielding: reduce (factor 18) neutron radiation damage and aging
- ENUBINO: pre-demonstrator prototype with 3 LCM tested @ CERN to study uniformity and efficiency

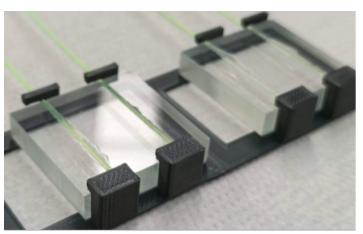
calorimeter tilting

The tagger demonstrator: mechanical structure

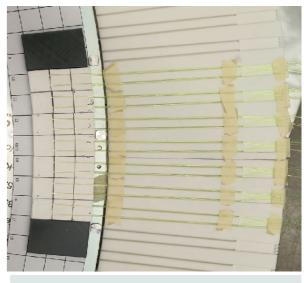
Construction @ INFN - Legnaro National Laboratory


Lifting test with additional 2 tons (prototype weight ~3.2 tons)

Light-tight cover

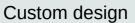

HEP-EPS - 23/08/2023

The tagger demonstrator: scintillator tiles


EJ-204 scintillator tiles (3x3 cm²) with grooves for WLS fibers

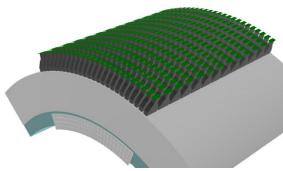
Fiber gluing (EJ-500 optical cement)

Tile painting (EJ-510 TiO₂ diffusive paint)

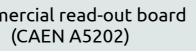

Tile assembling on arcs and fiber routing

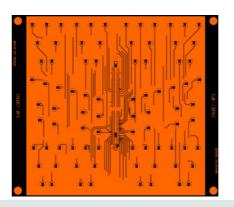
The tagger demonstrator: fiber routing and electronics

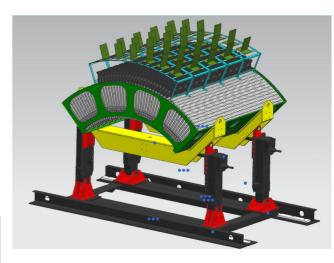
Fiber concentrators for bundling and routing to SiPMs



Produced with 5 consumer level 3D printers



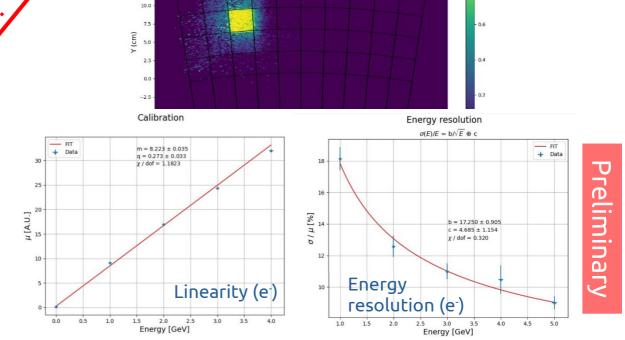

Custom + Commercial electronics


Front-End Board (SiPMs + Low V)

Custom interface board to connect 5 FEB (60 ch) to 1 A5202 (64 ch)

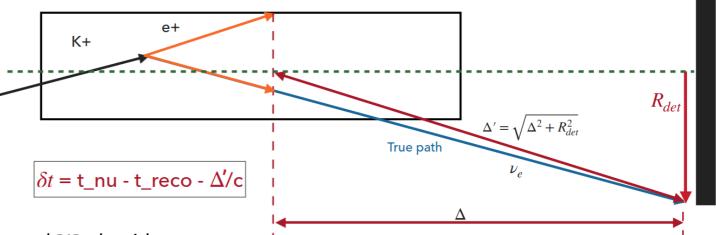
The tagger demonstrator: @ CERN!

T9 beamline Mixed e^{-} , π^{-} , μ^{-} (p=0.5-15 Gev/c)

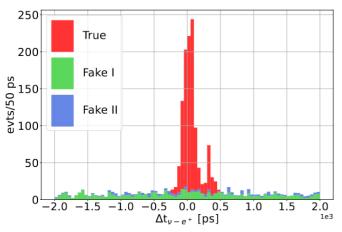


Parameter	Quantity or range		
Scintillator tiles (7 shapes)	1360		
WLS	1.5 km		
Channels (SiPM)	400		
Hamamatsu (50 μ m cell)	240, $4\times4 \text{ mm}^2$ - calo, $160 3\times3 \text{ mm}^2$, t_0		
Fiber concentrators (FE boards)	80		
Interface boards	8		
read-out boards (A5202)	8		
CAEN digitizers	45 ch		
horizonthal movement	$\sim 1 \mathrm{\ m}$		
vertical tilt	up to $\sim 200 \text{ mrad}$		

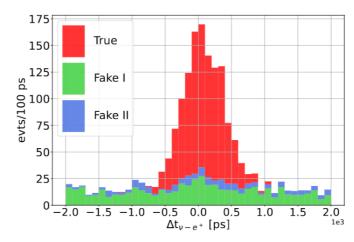
Efficiency map - channel 9

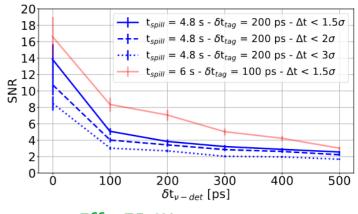

Dedicated publication after data analysis completion

Time tagging



Investigating the possibility to operate ENUBET as a time-tagged neutrino beam


- Time coincidences of v_e and e^+
- Flavour and energy determination enriched by charged lepton observation at decay level


- Employed full beamline simulation and PID algorithms
- = fake matches of e⁺candidates with neutrinos produced outside of the tagger volume
- = fake matches of e⁺ candidates with neutrinos produced inside of the tagger volume

Infinite time-res. both for tagger and v-det
Intrinsic 74 ps spread (1 σ) due to the size of
calorimeter modules (11 cm) and
indetermination of the decay point

Smearing of the distribution assuming: $\delta_t^{tag} = 200 \text{ ps}$, $\delta_t^{det} = 200 \text{ ps}$

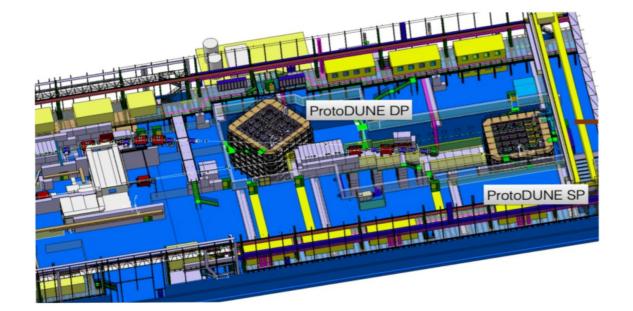
$$Eff = 75.6\%$$

S/N = 3.8

with $\delta_t^{\text{tag}} \text{==} 200 \text{ ps}$, $\delta_t^{\text{det}} \text{==} 200 \text{ ps}$

Summary

- Final design of beam transfer line in place, paper published
 - static transfer line: $10^4 v_e^{cc}$ events in ~2.3 years (@ SPS)
 - pave the way for a time-tagged neutrino beam
 - multi-momentum beamline ongoing R&D: DUNE & Hyper-K optimized
- Design of the decay tunnel instrumentation finalized:
 - prototype test-beams @ CERN: technology validation
 - final demonstrator tested @ CERN-PS in October 2022 and in August 2023
- Detector simulation and PID studies:
 - developed full GEANT4 simulation of calorimeter
 - finalizing waveform simulation to fully assess the pile-up effects
 - very good PID performance on both positron and muon reconstruction
- Systematics: hadro-production and beyond
 - achieved 1% systematic goal due to hadro-production with lepton monitoring
 - assess sub-leading systematics due to detector effects and beamline parameters



Next steps: towards a real implementation @ CERN

eno bet

- Propose a short baseline neutrino experiment @ CERN exploiting the SPS and the protoDUNE detectors
- Accelerator and civil engeneering studies in the framework of Physics Beyond Colliders
- Delivery of a Conceptual Design Report in a couple of years
- Run after CERN LS3 (i.e. during DUNE and Hyper-K data taking)

Cheapest option: dedicated beamline extracted from North Area to protoDUNE

Рго:

- Maximum use of exisiting facilities
- Slow extraction easily implemented

Cons:

- Potential radiation issues
- Interference with other experiment

Cleanest option: dedicated extraction line near the North Area toward protoDUNE

Рго:

- Minor radiation issues
- No interference with experiments and existing facilities

Cons:

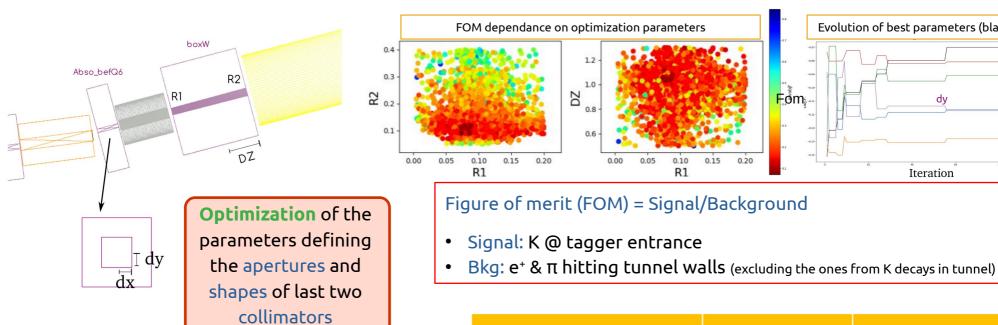
- Higher cost
- Potential issues with the slow extraction

Thanks for your attention!

ENUBET testbeam @ CERN-PS – T9 beamline – 16-29 August 2023

Additional material

Beamline optimization studies


DΖ

R1

R2

Evolution of best parameters (black: FOM)

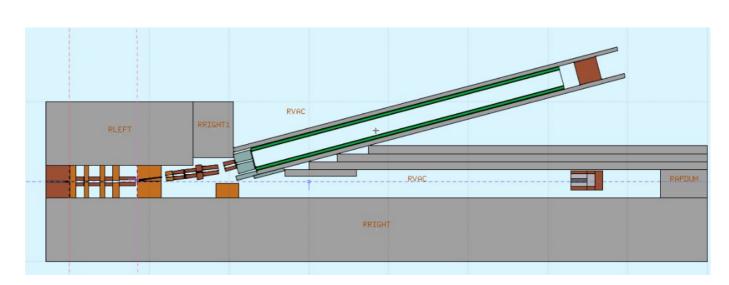
Iteration

An optimization campaign was performed:

- Goal: further improvement of the π/K yield at tunnel entrance while keeping background at low level
- Strategy: scan parameter space of beamline to maximize FOM
- Tools:
 - full facility implemented in GEANT4 → control with external cards all parameters
 - systematic optimization within framework based on genethic algorithm

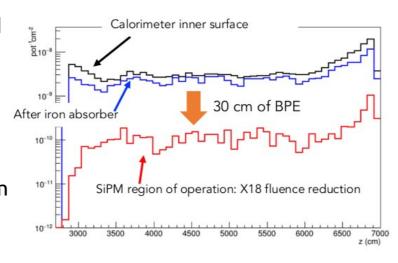
Rates @ Tunnel entrance for 400 GeV POT	π^+ [10^{-3}]/POT	$K^+ [10^{-3}]/POT$
Design	4.13	0.34
Optimized	5.27	0.44

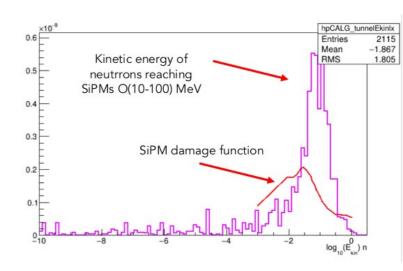
Føm:


Background hitting tunnel walls	e ⁺ [10 ⁻³]/K ⁺	$\pi^{+}[10^{-3}]/K^{+}$
Design	7	59
Optimized	2	35

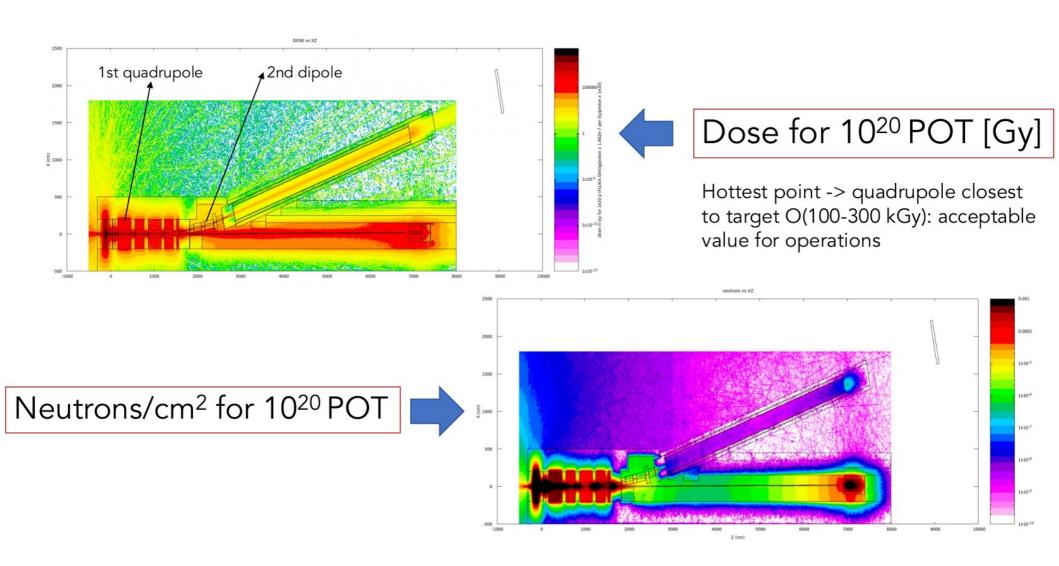
- About 28% gain in flux \rightarrow 2.3 y to collect 10⁴ ν_e^{CC}
- Reduced backgrounds, but similar shape to signa

Irradiation studies




A detailed FLUKA simulation of the setup has been implemented (includes proper shielding around the magnetic elements)

Neutron fluence provided by FLUKA guided the design of the detector tecnology for tagger:


→ SiPM outside the calorimeter abobe a 30 cm BPE shielding

Irradiation studies

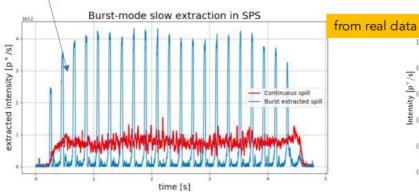
Horn based focusing

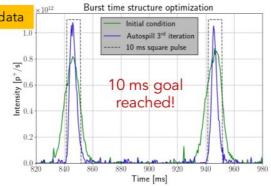
A. Branca slide @ ICHEP2022

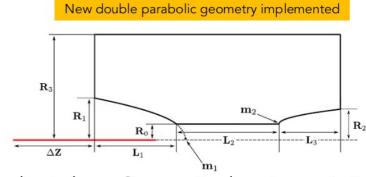
M.Pari et al., Phys. Rev. Accel. Beams 24, 083501 (2021)

Boosting the neutrino flux

Employ magnetic Horn




Overkilling pile-up @ tunnel


Burst mode slow extraction: multiple ms-long pulses slow-extracted during flat-top

compatible with Horn and pile-up @ tunnel

Dedicated tests at CERN-SPS:

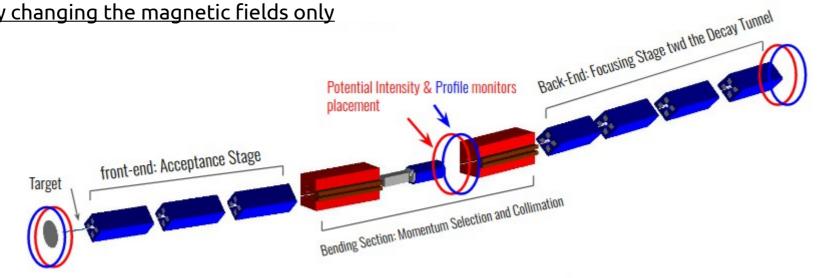
- successfully implemented;
- optimized down to 10 ms length @ 10 Hz;

From simulation studies:

• 3 to 10 ms pulse length can be reached;

Horn optimization: search for best shape & current values to maximize flux

- developed a dedicated optimization algorithm based on Genetic Algorithm;
- tests show that a FOM* 3x static beamline can be achieved;
- NEXT: further studies on dedicated beamline fine-tuned for horn;

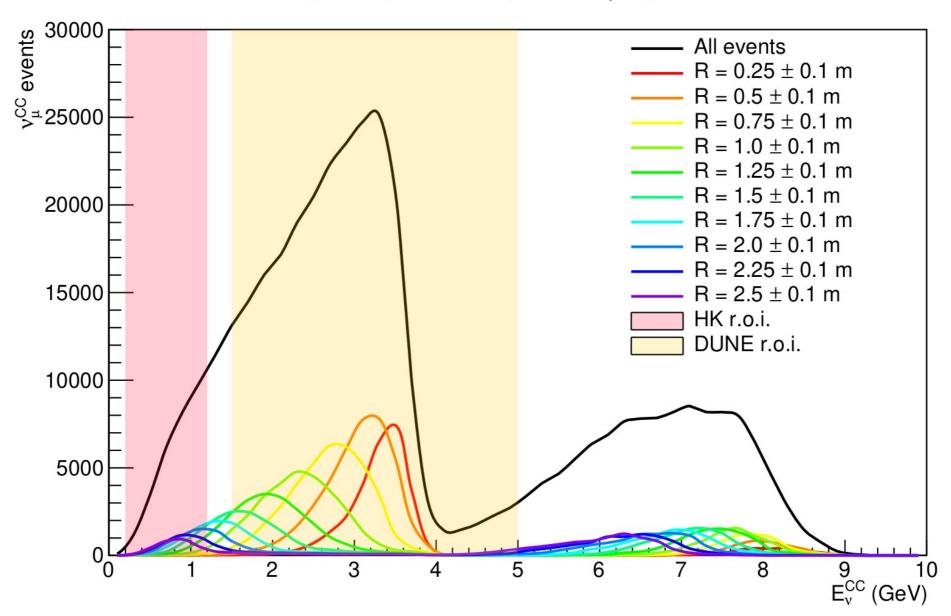

*FOM = # of K+ within momentum bite focused at first quadrupole after the horn => beamline independent

A. Branca ICHEP2022 - 07/07/2022 21

Multi-Momentum Beamline

A parallel study ongoing for the hadron beamline to focus **8.5, 6** or **4 GeV/c** secondaries by changing the magnetic fields only

Layout summary:

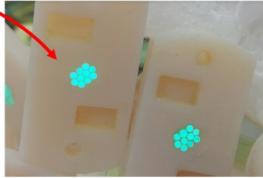

- First quadrupole distance from the target: 30 cm
- Target tilted by 1° w.r.t. beamline to reduce background and primary re-interaction
- 5 mm W absorber after collimation → to reduce the positrons bgk
- Primary Protons Momentum: 400 GeV
- Secondary Momenta: 8.5 GeV 6 GeV 4 GeV

Add flexibility and allow a set of different neutrino spectra from Hyper-K to Dune regions of interest

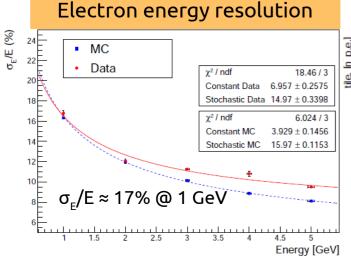
ν_{μ}^{CC} spectrum @ detector

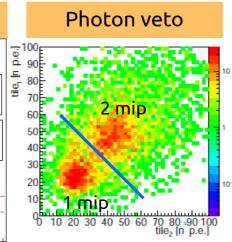
ENUBET @ SPS, 400 GeV, 4.5e19 pot, 500 ton detector

The instrumented decay tunnel (II)



Prototype of sampling calorimeter with <u>lateral WLS-fibers</u> for light collection


Large area (4x4 mm²) SiPM for 10 WLS (one LCM)



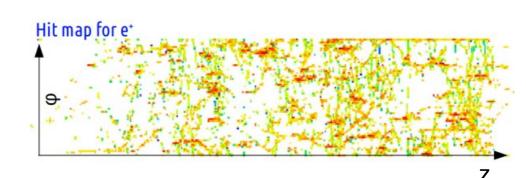
Tested during 2018 test-beam runs @ CERN PS-T9

SiPM installed outside calorimeter, above shielding: reduce (factor 18) neutron radiation damage and aging

Status of prototyping:

- Lateral readout calorimeter prototype successfully tested
- Photon veto tested
- Custom digitizer: in progress

Choice of technology finalized and cost-effetive!


F. Acerbi et al, JINST (2020), 15(8), P08001

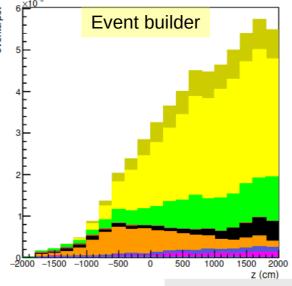
K_{e3} positron identification

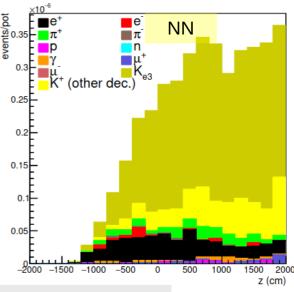
Full GEANT4 simulation of the detector

- hit-level detector response
- validated by prototype tests @ CERN

Analysis chain:

1) Event builder:


- start from event "seed" (LCM with E>28 MeV in first layer) to preselect e.m. showers
- cluster energy deposits compatible in space (-5 $<\phi_{seed}<5$; -3<z $_{seed}<10$) and time (-1< Δ t<1 ns)
- associate T0 hits on the 8 upstream tiles wrt to seed in the same ϕ sector (Δ t within 1 ns)


2) e / π / γ / μ separation:

• Multivariate analysis (MLPNN from TMVA) exploiting 19 variables (energy pattern in calorimeter, event topology, photon-veto)

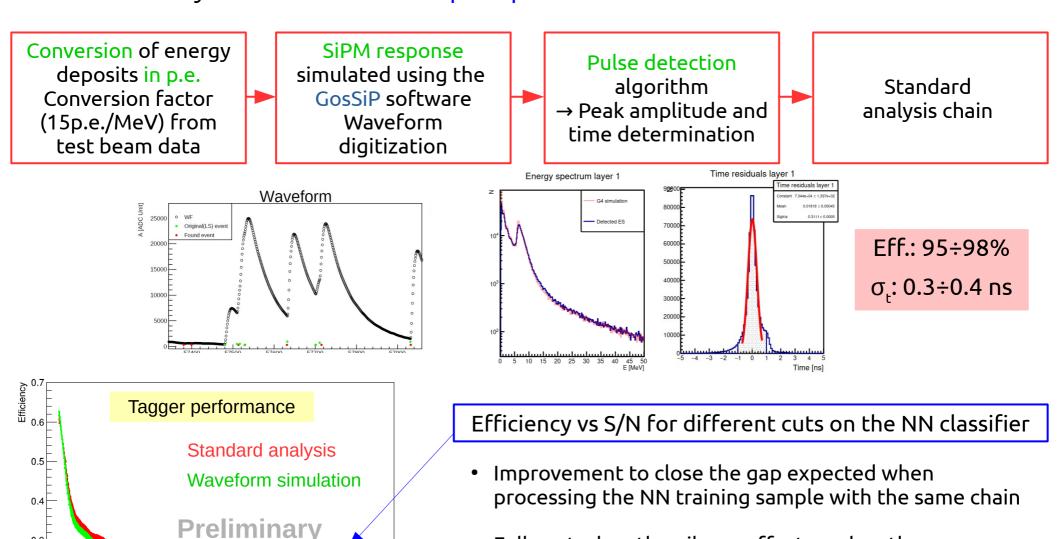
Performance

S/N = 2 Efficiency: 22% (~ half geom.)

Longitudinal position along tunnel

Variable used in the fitting procedure to constrain the v_a flux \rightarrow Today A. Branca talk

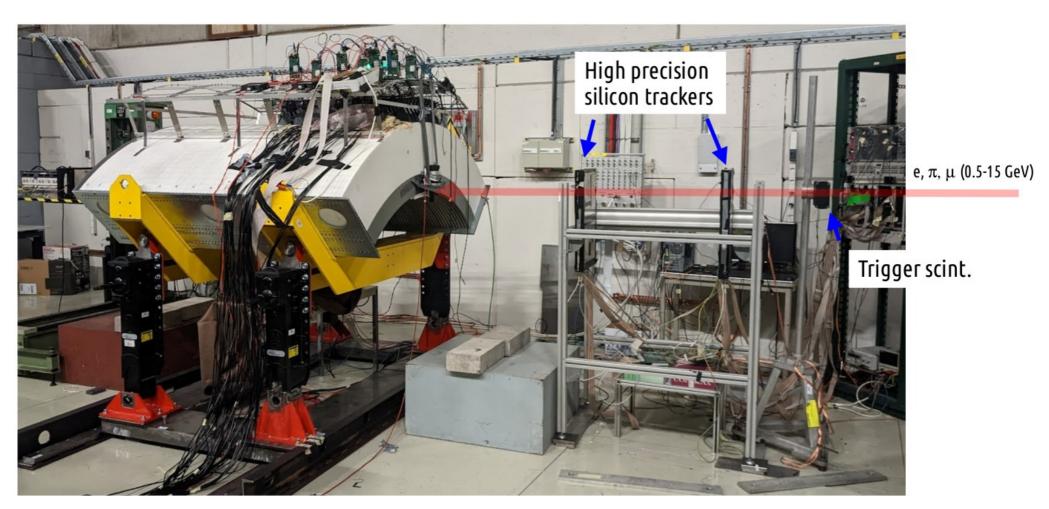
 K_{e3} BR ~5% and K make ~5–10% of beam composition


F. Pupilli

Waveform simulation and reconstruction

0.3

Software framework implemented to simulate tagger response at single channel level → fully realistic treatment of pile-up effects


• Full control on the pile-up effects and on the

reconstruction chain up to the signal processing level

The tagger demonstrator: @ CERN!

October 2022

Same ancillary detectors in 2023