

http://enubet.pd.infn.it

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

The physics of ENUBET

ERC consolidator grant (2016-2022) – P.I. A. Longhin

Since 2019 CERN Neutrino Platform Experiment as NP06/ENUBET

F. Pupilli

(INFN)

FIP Physics Centre: meeting with experiments

24/06/2021

on behalf of the

ENUBET Collaboration: 62 physicists, 13 institutions

Main systematics contribution on the flux bypassed:

• Hadron production, beamline geometry and focusing, POT

Pillars of the ERC project:

- Built/test a demonstrator of the instrumented decay tunnel (tagger)
 - \rightarrow sampling calorimeter with segmentation in Z, $\phi,\,R$
- Design/simulate the layout of the hadronic beamline

F. Pupilli

Latest update: SPSC Annual Report 2021

K positrons measured in

the instrumented tunnel

 \Rightarrow monitoring of v

ENUBET in Physics Beyond Colliders

Since 2021 ENUBET is included in the PBC effort with peculiar goals:

- Cost assessment of the facility and detailed accelerator/engineering studies
 - → Investigate the possibility to serve with ENUBET a set of v Xsec experiments (LAr, Water Cerenkov, HP-TPC with Ar, low Z targets...) in the CERN NA
- Study possible synergies at facility level with nuSTORM
 - → Focus on proton extraction, target station, meson beamline, proton dump

FIP physics centre

 Extend and quantify the physics reach of ENUBET beyond the original goal of 1% flux precision, involving CERN EP and TH divisions

Cross section measurements

ENUBET is an ideal facility for high precision v-N cross section measurements at the GeV scale

- Absolute normalization and flavour content know at ~1%
- Abundant source of v_e (the appearing species in LBL experiments)
- v energy known a priori at 10-20% on an event by event basis
- Remove biases from nuclear effects and FSI that are affecting the energy reconstruction through final state particle kinematics

FIP meeting - 24/06/2021

- Measure σ x ε for the oscillation program with "replica" detector technologies
- Decouple σ and ε with complementary high efficiency detectors

W-Cherenkov, LAr

Low Z targets

High Eff. (HP-TPC, FGD)

A variety of detector concepts is desirable -

HK 10 years (2.70E22 POT 1:3 $v:\bar{v}$) 16 $\sin(\delta_{\rm CP}) = 0$ exclusion $\left(\sqrt{\Delta\chi^2}\right)$ Statistics only Improved syst. (v_e/\overline{v}_e xsec. error 2.7%) T2K 2018 syst. (v_{a}/\overline{v}_{a} xsec. error 4.9%) F. Di Lodovico 10 NeuTel 2021 5σ 30 -22 -1Hyper-K preliminary True δ_{CP} True normal hierarchy (known) F. Pupilli

CERN-NA could become a hub for detailed cross sections experiments, boosting the LBL programs in Japan and USA, in the spirit of the European Strategy for Particle Physics:

To extract the most physics from DUNE and Hyper-Kamiokande, a complementary programme of experimentation to determine neutrino cross-sections and fluxes is required. Several experiments aimed at determining neutrino fluxes exist worldwide. The possible implementation and impact of a facility to measure neutrino cross-sections at the percent level should continue to be studied. Other important

See also the ESPP Physics Briefbook arXiv:1910.11775

FIB physics

1) Low normalization errors on the flux allow for further constraints on **sterile neutrinos** or to study them in the scenario of having them discovered at FNAL

Update and further extend this study to the current beamline implementation and performance

2) Decay-At-Rest (DAR) measurements at proton dump (sterile neutrinos, coherent v-scattering, ...)

3) Explore the Dark portal through Kaon tagging in the transfer line and decay kinematics reconstruction in the instrumented decay tunnel

Additional slides

Collimators and shieldings tuned to keep under control backgrounds in the tunnel while retaining large enough meson yields

Static focusing (with 2 s proton extraction)

- Mitigation of pile-up effects in the tunnel
- Muon monitoring at the h-dump at 1% level
 → <u>flux of v_u from pions</u>
- Pave the way for time-tagged v beams:
 - → time correlation of the interacted neutrino with the associated lepton in the tunnel

Working in parallel on horn + "bursted" slow extraction ¹⁴
_{p (GeV/c) beting} - 24/06/2021 8

The instrumented decay tunnel (I)

Requirements:

- Allow e⁺/π^{±,0} separation in the GeV energy region
- **Suppress** background from **beam halo** (μ, γ, non collimated hadrons)
- Sustain O(MHz) rate and **suppress pile-up effects** (recovery time ≤ 20 ns)
- **Doses**: <10¹⁰ n/cm² at SiPMs, 0.1Gy at scintillator

The tagger demonstrator

Larger scale prototype:

- 1.7 m long
- 45° coverage in ϕ
- To be tested @ CERN PS-T9 in 2022
- Demonstrate physics, scalability and cost effectiveness

WLS collecting light from each module through grooves on the frontal face of scintillator tiles

Custom digitizers @ 500 MS/s

F. Pupilli

Constrain on flux:

- Muons from π monitored by the range-meter (low energy part of the v flux)
- Muons from K_{u2} monitored in the instumented tunnel (high energy part)

Constrain on energy:

- Since the momentum bite is <10% and the detector distance is small, strong correlation between the position of the neutrino vertex and its energy
- Technique dubbed "narrow-band off-axis" *
- v energy available on a event-by event basis without relying on the reconstruction of the final state in $\nu_{_{u}}^{\ cc}$ interactions

About $8x10^5 v_u^{cc}$ interactions in ~2 years

*F. Acerbi et al., CERN-SPSC-2018-034

ENUBET multi-momentum transferline

• A parallel study ongoing for the hadron beamline to focus **8.5**, **6** or **4** GeV/c secondaries <u>by changing the magnetic fields only</u>

 Add flexibility and allow a set of <u>different neutrino spectra</u> from Hyper-K to Dune regions of interest