The ENUBET neutrino beam

F. Pupilli (INFN-Padova)

on behalf of the ENUBET Collaboration

54 physicists, 12 institutions

Venice, 18-22 March 2018

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

ENUBET is:

• A narrow band beam at the GeV scale with a superior control of the flux, flavor and energy of the neutrinos produced at source

It is **designed** for:

 A new generation of short-baseline experiments and a 1% precision measurement of the v_e and v_u cross sections

We present at NeuTel 2018

• The end-to-end simulation of the ENUBET beamline

M. Torti

- The updated **physics performance**
- The latest results on the design and construction of the beamline instrumentation
 Poster by

A narrow-band beam for the precision era of v physics

Target and W screen 2nd quadrupole triplet Instrumented tagger to v detector Target and W screen 7.4° bending to proton dump

- Proton driver: CERN SPS (400 GeV), Fermilab Main Ring (120 GeV), JPARC (30 GeV)
- **<u>Target</u>**: 1 m Be, graphite target. FLUKA
- Focusing
 - Horn: 2 ms pulse, 180 kA, 10 Hz during the flat top [not shown in figure]
 - Static focusing system: a quadrupole triplet before the bending magnet
- Transfer line
 - Kept short to minimize early K decays and those of off-momentum mesons out of tagger acceptance (untagged neutrino component)
 - Optics: optimized with TRANSPORT to a 10% momentum bite centered at 8.5 GeV/c
 - o Particle transport and interaction: full simulation with G4Beamline
 - Normal-conducting magnets: 2 quad triplets (15 cm wide, L < 2m, B = 4 to 7 T/m) 1 bending dipole (15 cm wide, L = 2, B = 1.8 T)
- Decay tunnel: R = 1 m L = 40 m, low power hadron dump at the end
- Proton dump: position and size under optimization

The ENUBET beam line - Yields

Focusing system	π/pot (10 ⁻³)	K/pot (10 ⁻³)	Extraction length	π/cycle (10 ¹⁰)	K/cycle (10 ¹⁰)	Proposal ^(b)
Horn	77	7.9	2 ms ^(a)	347	36	X2
"static"	19	1.4	2 s	86	6.3	x4

(a) 2 ms at 10 Hz during the flat top (2 s) to empty the accelerator after a super-cycle (b) A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155

Horn option more efficient in terms of meson yields, but the static one gained momentum since yields are ~ x 4 larger wrt to preliminary estimates as a result of optic optimization

Advantages of the static extraction:

- No need for fast-cycling horn
- Strong reduction of the rate (pile-up) in the instrumented decay tunnel
- Monitor muons after the dump at 1% level (flux of v_{μ} from π) [under evaluation]
- Pave the way to a "tagged neutrino beam", namely a beam where the neutrino interaction at the detector is associated in time with the observation of the lepton from the parent hadron in the decay tunnel

Neutrino events per year at the detector

- Detector mass: 500 tons (e.g. Protodune-SP or DP @ CERN, ICARUS @ Fermilab)
- **Baseline** (i.e. distance between the detector and the beam dump) : 50 m
- Integrated pot: 4.5 10¹⁹ at SPS (0.5/1 year in dedicated/shared mode) or 1.5 10²⁰ pot at FNAL

- v_{μ} from K and π are well separated in energy (narrow band)
- v_e and v_μ from K are constrained by the tagger measurement (K_{e3} , mainly $K_{\mu 2}$)
- v_{μ} from π : μ detectors downstream of the hadron dump (under study)

v_{μ} CC events at the ENUBET narrow band beam \mathcal{P}_{μ}

The neutrino energy is a function of the distance of the neutrino vertex from the beam axis (R).

ENUBET @ SPS, 400 GeV, 4.5e19 pot, 500 ton detector

NeuTel 2019 - 21/03/2019

Machine studies for the horn-based option

The static beamline: emittance, particle content

F. Pupilli - ENUBET

NeuTel 2019 – 21/03/2019

• Studies to **optimize** the **shielding** against muons and other backgrounds

F. Pupilli - ENUBET

Alternative beamline options

Preliminary

8000

Other beamline schemes are also investigated:

2 dipoles with an intermediate quadrupole Increased length of the beamline but...

- Better quality of the beam in the tagger
- Larger bending angle (15.1°) reducing:
 - Backgorund from muons
 - Probability for neutrinos produced in the straight section to reach the v detector

Particles rates in the decay tunnel

Static focusing system, 4.5 10¹³ pot in 2 s (400 GeV) Radius = 1 m from the axis of the tunnel Rate as a function of the azimuthal Rate as a function of the longitudinal position z in the tunnel angle ϕ in the tunnel 4000 rates (Hz/cm²) ----- prim. μ All events 104 sec. µ 35000 prim. π 30000 sec π 10^{3} ····· prim e 25000 sec. e 20000 10² 15000 10000 20 60 80 100 120 140 160 180 200 5000 15 z tunnel (m) 2nd part of the tunnel favoured in terms of S/N **Asymmetric** distribution of halo particles With static focusing rates below **10 KHz/cm²**

The ENUBET Tagger

- Ultra Compact Module (UCM) (Plastic scint. + Fe absorbers)
- Integrated light readout with SiPM

 $\rightarrow e^{+}/\pi^{\pm}/\mu$ separation

- **2)** Integrated γ-veto (t₀-layer)
 - Rings of 3×3 cm² pads of plastic scintillator
 - $\rightarrow \pi^0$ rejection

1) Compact calorimeter with longitudinal segmentation

Ultra Compact Module $3 \times 3 \times 10 \text{ cm}^3 - 4.3 \text{ X}_0$

h=3 cm

NeuTel 2019 - 21/03/2019

0.5 cm(i.e. 0.012 X₀)

e⁺

π⁺ (background) topology

e⁺ (signal) topology

Ke3 positron reconstruction

Full GEANT4 simulation of the detector, validated by prototype tests at CERN in 2016-2018. The simulation include particle propagation and decay, from the transfer line to the detector, hit-level detector response, pile-up effects.

The Tagger – Shashlik with integrated readout 🦻

- 56 UCM arranged in 7 longitudinal block (~30 X₀) + hadr. Layer (coarse sampling)
- e/μ tagged with Cherenkov counters and muon catcher
- Beam Composition @ 3GeV: 9% e, 14% μ, 77% hadrons

Track reco Scinti 3 Box Beam Scinti 2 Scinti 74 cm Cher B Cher A 66. cm Scint Calorimeter 10x10 20 cm 17.8 cm μ catcher DAQ non inter. π-id ~275 cm trigger 61 cm

Test beam @ CERN-PS T9 line 2016-17

NeuTel 2019 - 21/03/2019

The Tagger – Test Beam results

Calorimeter prototype performance with test-beam data @ CERN-PS T9 line 2016-2017

The Tagger – t₀-layer and SiPM irradiation

Calorimeter prototype performance with test-beam data @ CERN-PS T9 line 2016-2018

γ/e+ discrimination (Photon-Veto)

t0 layer: scintillator (3×3×0.5 cm³) + WLS Fiber + SiPM

- → light collection efficiency → >95%
 - time resolution $\rightarrow \sigma \sim 400 \text{ps}$
 - First 1mip/2mip separation using photon conversion from π⁰ gammas (π⁰ by charge exchange of π⁺ with low density target after SiC)

Irradiation Studies

SiPM were irradiated at LNL-INFN with 1-3 MeV neutrons in June 2017

The Tagger – Lateral readout option

Light collected from scintillator sides and bundled to a single SiPM reading 10 fibers (1 UCM)

<u>Pros</u>: reduced SiPM irradiation damage, better accessibility, possibility of replacement

CERN-PS – September 2018

- Tested a module with longitudinal containment of hadronic showers and full e.m. showers containment
- Integrating a t0-layer
- Analysis on going

Efficiency maps

F. Pupilli - ENUBET

Further details and R&D on **M. Torti poster**¹

Conclusions

ENUBET is a narrow band beam with a high precision monitoring of the flux at source (1%), neutrino energy (20% at 1 GeV → 8% at 3.5 GeV) and flavor composition (1%)

In the last 2 years, we have

- o provided the first end-to-end simulation of the beamline
- tested with data the "burst" slow extraction scheme at CERN SPS
- proved the feasibility of a **purely static focusing system** (10⁶ v_{μ}^{cc} , 10⁴ v_{e}^{cc} /y/500 t)
- **full simulation of e⁺ reconstruction**: **single particle level** monitoring with S/N = 0.5
- identified the best options for the instrumentation of the decay tunnel (shashlik and lateral readout: <u>final decision in 2019</u>)

The **ENUBET** technique is **very promising** and the results we got in the last months **exceeded our expectations**

Next steps

- Improve the beamline design to reduce beam halo contamination (increase S/N)
- Assess **systematics** on predicted **neutrino fluxes**
- enhance precision in v_{μ} flux: μ tagging from $K_{\mu 2}$ count μ from π after had-dump
- Build a **demonstrator** prototype of the tagger (2021)
- CDR at the end of the project (2021): physics and costing

Backup slides

The static beamline

2 s flat top

A. Longhin slide @ SPSC open meeting

Time tagged neutrino beams ?

- Event time dilution → Time-tagging
- Associating a single neutrino interaction to a tagged e⁺ with a small "accidental coincidence" probability through time coincidences

 ${\rm E}_{_{\rm v}}$ and flavor of the ${\rm v}$ measured ''a priori'' event by event.

Compare "E_ from decay kinematics" \leftrightarrow "E_ from ν interaction products"

CERN-SPSC - 23/01/2019

NeuTel 2019 - 21/03/2019

Presently with 2.5e13 pot / 2s slow extraction: genuine K_{e_3} cand. : 80 MHz \rightarrow 1 every ~ 12 ns background K_{e_3} cand. ~ 2 x \rightarrow 1 cand. every ~ 4 ns With δ =0.5 \oplus 0.5 ns resolutions already interesting! S/N ratio will likely improve with further tuning.

The Tagger – positron ID from K decay

Event Builder	Seed of the event = UCM in first layer with energy deposit > 20 MeV → link nighboring modules with time (1ns) and position requirements
e/π separation	Neural network (pattern of the energy deposition in the calorimeter)

Response to signal and background

