The design of the beamline for the ENUBET experiment

Claudia Caterina Delogu
University of Padova & INFN
on behalf of the ENUBET Collaboration
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement N. 681647)

NP06/ENUBET: Enhanced NeUtrino BEams from kaon Tagging

Novel ν_e source from $K^+ \to e^+ \pi^0 \nu_e$ decays, lepton production at large angles is monitored at single particle level by calorimetric techniques, i.e. tagging the e^+ in an instrumented decay pipe

$\rightarrow O(10\%)$ flux uncertainty
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement N. 681647)

NP06/ENUBET: Enhanced NeUtrino BEams from kaon Tagging

Design optimized to reach a $O(1\%)$ precision on the ν_e flux $\rightarrow \nu_e$ flux prediction = e$^+$ counting

Two main steps:
- layout of the π/K focusing and transport system with suitable proton extraction schemes
- special instrumented beamline capable of performing positron monitoring from decays of K in a ν beam decay tunnel at single particle level
The Beamline

Requirements:

- Use of conventional magnets (normal-conducting, aperture < 15 cm)
- Keep under control level of background transported to the tunnel: fine tuning of shielding and collimators
- Maximize number of K^+ at tunnel entrance (looking for $K^+ \rightarrow e^+ \pi^0 \nu_e$)
- Small beam size: non decaying particles should exit the decay pipe without hitting the walls
- Minimize total length of the transferline (~20 m) to reduce kaon decay in the not instrumented region
Proton target design

Optimum particle production: primary proton beam = 400 GeV, secondary kaons momentum ~8.5 GeV.

Goal: maximise K production in region of interest.
- Optimization of transverse dimensions and length
- Test of different materials (Graphite, Beryllium, Inconel)

FLUKA + G4beamline simulations
→ maximise number of kaons of given energy (10% momentum bite) that enter a beamline with 20 mrad angular acceptance

Last version of the beamline:
Graphite target, L = 70 cm, R = 3 cm
Inconel target (L = 50 cm, R = 3 cm) is also being considered
Transfer Line design

Static TL, top view

Optics optimized with TRANSPORT.

Particle transport and interaction: full simulation with G4beamline

FLUKA: assess doses in the tunnel area where instrumentation will be placed, target studies

GEANT4: optimization of beamline elements, systematic uncertainties on the neutrino flux
Transer Line details

Reference beamline: 8.5 GeV, 10% momentum bite.
Focusing system: a quadrupole triplet before the bending magnets (14.8° bending)
→ Larger bending angle (w.r.t. original proposal) and increased length
→ Better collimated beam and reduced backgrounds

Improved shielding
- **W plug**: dumps low energy particles hitting the tagger, backgrounds reduced by large factors
- **W foil**: dumps low energy e^+ entering tunnel

G4beamline
Multi Momentum beamline

Neutrinos from reference beamline are peaked ~4 GeV (DUNE R.o.I, Region of Interest).

New beamline design: secondary multi momentum (4, 6, 8.5 GeV) → cover full range of interest (including the low-energy region, T2K/HyperK R.o.I.)

Optics optimization: TRANSPORT, G4beamline.

Contains detailed description of existing magnetic elements

First estimates of kaon fluxes and background are ongoing.
New design from G4beamline (feat. new proton target) → suppression of low energy ν_e from target region

Further reduction of background: optimization and final design of collimators and absorbers at the end of the transfer line (position, dimension and apertures) in progress with GEANT4

→ New genetic algorithm implemented to sample the parameter space

• Convergence in O(100) iterations

• Figure Of Merit = ratio K^+ entering tagger / background hitting tunnel

 \[\text{Figure Of Merit} = \frac{\text{signal}}{\text{background}} \text{ to be maximized} \]

GEANT4 - beamline optimization
GEANT4 - beamline optimization

→ FOM = \frac{\text{ratio } K^+ \text{ entering tagger}}{\text{background hitting tunnel}}

Preliminary

Scan of parameter space with FOM value in colour scale

Before implementation of new collimators

After optimization

Signal: kaons not affected

Background: pions and positrons - reduced

Convergence indicator

10
Particle fluxes @ entrance of instrumented decay region

GEANT4 reproduces geometry and outcome of G4beamline simulation.
Contains information on particle decay along the beamline.

Flexibility of GEANT4 simulation:
- Map of different kinds of background entering the instrumented decay region
- Optimization of the beamline design
- Study of flux systematics

Spectra of particles at tagger entrance
Neutrino fluxes @ far detector

Flexibility of GEANT4 simulation:

- Detailed definition of signals, generation and path of different neutrino production mechanisms
- Even after instrumented decay region → far detector

Neutrino flux (weighted by energy) on a 6x6m² surface at 70m from the tagger exit
Summary

- ENUBET: reducing the flux related systematics → monitoring charged leptons in an instrumented decay tunnel
- Design of a transfer line: maximize K^+ and π^+ yield, minimize meson decays in the non-instrumented region.
- Step forwards in simulation:
 - Beamline design
 - Improved proton target design
 - GEANT4 simulation also for optimization studies
 - Doses estimation through FLUKA simulation
 - Multi Momentum beamline (4, 6, 8.5 GeV) → enhanced physics reach
- Next steps:
 - Finalize optimization