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The concept of monitored neutrino beams

Conventional “meson-based” beam brought to a new standard — use a narrow band beam and
shift the monitoring at the level of decays by instrumenting the decay tunnel (tag high-
angle leptons)

An ancillary facility providing physics input to the long-baseline program
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“By-pass” hadro-production, protons on target, beam-line efficiency uncertainties
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* Physics Beyond Colliders CERN study

681647, Pl A. Longhin, Padova University, INFN
» CERN Neutrino Platform: NP06

Aims at demonstrating the feasibility and physics performance of a neutrino beam where lepton production is
monitored at single particle level

Requires a collimated p-selected hadron beam

* Instrumented Odecay region — only decay products hit the tagger -» manageable rates
=T - (la g€ angle) e ~ Requires a “short”, 40 m, tunnel (~all ve from K, ~1% v. from p)
K= prv,ntor—prv = (large angle) *  _, gonus: an “a priori” constraint on the v energy by exploiting
» Veand v flux prediction from e'/p" rates correlations between E,and the position of interactions in the

detector (narrow band beams)

1) Design/simulate the layout of the hadronic beamline

L 2) Build/test a demonstrator of the instrumented decay tunnel



The 2022 SPSC report

Last year has been a key period with substantial progress on the main open

https://cds.cern.ch/record/2805716/files/SPSC-SR-310.pdf

items:;

The design of the beamline

The analysis of the reduction of systematic errors on the flux

The construction of the demonstrator of the instrumented decay region
Synergies with other projects

egg
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The ENUBET hadron beamline g ...
g

Focusing system: normal-conducting magnets (numerical aperture<40 cm):
* Focuses 8.5 +5% GeV/( quadrupoles & two bending dipoles (1.8 T field, 7.4° each)
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Genetic beamline optimizer with G4

* Avery difficult optimization in a large parameter space (geometry of
magnets, collimators, fields ...).

* Crucial importance of beam backgrounds and substantial room for
improvement — a very ambitious optimization campaign is worth doing!

* GEANT4 simulation has been setup with a fully parametric geometry easily
accessible with control cards (.mac)

* Genetic opt. algorithm developed for the horn ported to the full beamline.

* Figure of merit (FOM)
* n.of background e*/n* hitting tagger with respect to incoming K*

* Pilot run with 5 parameters:
* CCIN2P3 cluster: 100 beamlines for each + 100 iterations (5-8 hours each)

* Convergence achievable in a reasonable amount of time.

* Led to a new configuration that improved the FOM of the initial
configuration -




Genetic beamline optimizer with G4

Diagnostics plots
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Beamline optimization: lesson learnt

TLr6v3: let's look at the bkg positrons

x100 MPOT

The “integral” FOM might be not optimal. The selected \
configuration was very promising in terms of background
reduction but the shapes (in energy and impact point along the ~ \_
tagger) of signal and background were similar — less
discriminating power for the multivariate analysis.

Usual dominating
gamma conv
from WW1 (tlr6v2)
not only from WW1 §
now! new sec2last "
coll is generating e+

The originating volume of each component can be tracked —

most of background e* was coming from a specific collimator
whose range of variation was too small. Removing the collimator | PT distribution
reduced this background by ax 6 (!). et g |
G— " |
o LW W
1 il



Beamline optimization: |deaslprospec|:s oo

* We have taken the optimal solution from the algorithm and tried to vary single
parameters one at a time.
* i.e. We*absorber foil. Not in the generic optimization, came from a
previous study with G4BL — scan says 5 mm is still good
* last collimator length. The same minimum as the one found by the
multidimensional search (“sanity check” of the complex algorithm).

» A more refined FOM taking into account the distributions of signal and
background implemented (Eyis VS Zimpacr). More statistics is needed at constant
CPU time so:

* Only track target particlesin [7, 100] GeV — CPU time down by x 3 with a * Last collimator thickness scan [ Etier
limited reduction in the estimated background. Most importantly, the shape *  with different target tracks pre- [ & Gty

same minimum ... but faster.
* Parametrize the variables of incoming background to increase statistics and
repeat simulation on parametrized pdfs.

* Finally with this empowered tool we would like to explore the parameters of
the upstream part of the beamline

A. Longhin, ENUBET, 12/04/22



The lepton tagger

Lateral Compact Module
3x3x10 cm*-4.3 X,

r

Calorimeter

Longitudinal segmentation

Plastic scintillator + Iron absorbers
Integrated light readout with SiPM

- e*[n*/p separation
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e*n O
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"Multi-momentum” transferline

* Aparallel study ongoing for the hadron beamline to add flexibility and allow a set of different
neutrino spectra spanning from the “Hyper-K” to DUNE regions of interest. Focus 8.5, 6 or 4 GeV/c
secondaries by changing the magnetic fields only.

v_from 8.5 GeV/c secondaries
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FLUKA irradiation studies

Detailed FLUKA simulation of the setup
replicated for the latest beamline (TLR6v4)
in a semi-automatic way exploiting our G4
code.

" TLRé6v4

n* fluence: gives an idea on the pion
occupancy in the tagger and is a quick test for T
the correct implementation of magnetic phoage: bl

e .
STy
.ﬁ.—"’ = -

fields i _.‘Ed.—_.-:,.‘l;-—‘:!!’g::‘;,- [~
- 17 T

. . 4
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FLUKA irradiation studies

Neutrons: guided the design of
the detector technology for the
demonstrator (SiPM outside of the
calorimeter) — instrumentation
lifetime.

From the point of view of
irradiation the new beamline isin
line with our previous baseline
with two dipoles.

A. Longhin, ENUBET, 12/04/22
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Neutrons in the tagger
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FLUKA irradiation studies

dose-eq vs XZ after 1 day

dose-eq (psv)

We have also preliminary ™| \ - o
results (new) on the P ‘ ] }
equivalent dose after a i =

certain cool-down period _ e 7 4 ] w
(1h, 1 day, 1 month) to MR L At e ]

guide the shielding of the | = = = | ’
tagger instrumentation * ‘

and evaluate accessibility. = - ' g LSRN ST - :

In the tunnel, after 1d, ~0.05 pSv per primary proton

A. Longhin, ENUBET, 12/04/22 16



Link: Talk at nuFact2021 (A. Branca)

ENUBET: flux constraint

Uncertainty reduction on the Flux :
r=ee- Muon z
Constrain the flux model by exploiting correlations between the -
measured lepton distributions and the flux — Fit the model with data
and get energy dependent corrections.

E,(bin 1)

E,(bin 2)

Each histogram component corresponds to a bin in neutrino energy -l E (bin3)

| P W T W T T R | S S e
o SO0 1000 1S00 2000 2S00 000 ISO0 SO00
Impact Position (dm)

Nominal and +1¢ templates for the lepton observables are used to build the PDF:
PDF gyt (Nexp, &, B) = Ns(@ B) - S(, ) + Ng(@ ) - B(@ )

 a: set of hadro-production nuisance parameters (taking into account their correlations);

» p:set of beamline nuisance parameters (uncorrelated);

EML fit approach:

L(N|Nexp) = P(N | Nexp) ’ 1_[ P(Ni I PDFEXt.(Nexpan 6)1) ’ pdfa(a | Orl) ’ pdf[%(ﬁ | 0:1)

bins ‘M{ parameters are constrained bffheir pdfs



https://indico.cern.ch/event/855372/contributions/4499027/attachments/2306232/3923522/ENUBET_nuflux_sys_reduction_ABranca.pdf

ENUBH ﬂ i % Hadro-production: interaction of protons w/ target & hadrons produced inducing neutrinos
. flux constraint

Input:
» hadro-production data

Re-weight MC simulation:
* rescale each step in particle Nominal neutrino flux
chain producing a v

Beamline simulation
. . . . i i i i & ine,

The hadroproduction model s a realistic one derived from kA et ) ) —

a fit to real data obtained by the NA56/SPY experiment re-weighted Setof N Neutrino flux

using 400 GeV proton interactions. Mc (e SONRIIANEE Mat

Proton-target

Input:

» covariance matrix
hadro-production data

Flux systematic treatment including ENUBET information:

% build a model exploiting leptons templates in order to asses the impact on neutrino flux

Nominal lepton

observable

templates
Re-weighted
neutrino flux
Produce & fit Get a posteriori Re-weight MC (post-fit)

<l e T N toy-MC parameters using a posteriori

model PDF

experiments (HP & beamline) information

Neutrino flux
covariance matrix
(post-fit)

+10 lepton
observable
templates




Flux constraint on hadm_pmd. Link: Talk at nuFact2021 (A. Branca)

Previous report: machinery was using a toy MC (no
bias, assessment of post-fit errors). We can now show
the reduction of uncertainty introduced by the tagger
constraint using the full G4 simulation —

Both Kes (for ve) and Kyz/Ky;3 (for v,) data sample
constraints have been implemented.

We can link the spectrum of measured leptons
(muons and electrons in the tagger) to a reduction in
the neutrino flux normalization —

We still cannot quote how precise we could finally be
because we are still working in the limit where
hadroproduction uncertainty can be completely
eliminated with sufficient statistics. Next step is to
use the same approach to include beam-line, detector
and physics (BRs, decay kinematics) systematics —
asymptotic value.
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The demonstrator

A. Longhin, ENUBET, 12/04/22
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The Nov 2021 CERN-PS test beam "~ ... y .

z (mm)
y (mm)‘ Top view j:
o —
= A
= Si trackers tigger
*5;‘ scintillator beam
7Z(mm)

y Vs x (Sil+Si2)2

+15 GeV hadronic beam (parasitic to TOTEM)
Allowed to test the final configuration chosen for the demonstrator

A. Longhin, ENUBET, 12/04/22



The Nov 2021 CERN-PS test beam

ENUBINO uniformity - mip MPV - run 70344

160

140

120

100

A. Longhin, ENUBET, 12/04/22

Light collection uniformity, response to mip, test of
light readout scheme and SiPM choice.

More results soon (i.e. cross-talk)

o1 o
008 ; . . — 44.900000 V
B Tested response to mips for different overvoltage for
ol the SiPM that will be used for the demonstrator
B (Hamamatsu 14160-4050HS , 14160-3050HS)
0.04}
oozl |
0 50 100 150 200 250 300
23



The Nov 2021 CERN-PS test beam

Caracterization
continuing at LNL with
COSMIcs
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Assembly:

The demonstrator

mechanics

ANSYS =

bl s
= | R R
2020 R1 : \ &@@M\\\“
R
78 A

Weight~7t
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The demonstrator  building blocks

Basic building pieces have been
delivered at INFN-Legnaro (near
Padova): machined iron and 5%
Borated Polyethylene arcs.

A. Longhin, ENUBET, 12/04/22 26



The demonstrator




Assembly area at INFN-LNL

The demonstrator
mechanics

A. Longhin, ENUBET, 12/04/22 28



The demonstrator scintillators

Scintillators being prepared at INR
(Y. Kudenko) with UNIPLAST

A. Longhin, ENUBET, 12/04/22

Press form for
injection molding

29



The demonstrator scintillators

Dec 2021: first tile
produced

Scintillators being prepared at INR
(Y. Kudenko) with UNIPLAST

A. Longhin, ENUBET, 12/04/22 30



The demonstrator scintillators

Four types of tile sizes

«— T

30.0
A B 29.8 30.8 318 32.7
c 30.6 316 32.6 335

Four types of grooves

Tested 7 different combination of size and grooves

Scintillators being prepared at INR
(Y. Kudenko) with UNIPLAST

o

A. Longhin, ENUBET, 12/04/22 31



The demonstrator

scintillators

Scintillators being prepared at INR
(Y. Kudenko) with UNIPLAST

48 p.e./ mip

-10 ==

Light yield tests
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The demonstrator scintillators

INR: the press form for the plastic injection molding has been finalized
and a first set of some hundreds tiles produced and tested for light
yield with very good results. The total number of needed tiles is 6375,
in seven different shapes.

Contingency
plan specimens

The delivery of materials and transactions are evidently critical due to
the international situation.

In view of the high probability of delays we have made contacts with a
company that could likely perform the production with milling instead
of using injection molding, starting on scintillator sheets that are
being procured by SCIONIX. The first scintillator tiles specimen with
this alternative plan became recently available. Some additional waste
of material which is intrinsic in the milling procedure due to the size of
the milling drive of a few mm. Tests in progress.

A. Longhin, ENUBET, 12/04/22 33



The demonstrator —
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3D printed fiber routers
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The demonstrator
fiber routers

Produced with a battery of 5 consumer
level 3D printers (~25% done).

Reliable and quick enough (10/day).




The demonstrator i production
front-end

SiPM: Hamamatsu,
already procured
(14160-4050-HS and
14160-3050-HS)

A. Longhin, ENUBET, 12/04/22 36



The demonstrator
read-out

~1800 ch

Hybrid system giflE W s
el N e

* Custom digitizers B, WO o = ol

* Commercial CAEN digitizers it 1 ST | |

» BabyMIND (peak+time, Citiroc ASIC 96 ch) =

* CAEN FERS A5202 (Weeroc Citiroc-1A, peak+time, 64 ch) -

A. Longhin, ENUBET, 12/04/22 37



More activities, news... miscellanea

ERC further extended up to November 2022 (COVID pandemic).

Physics Beyond Colliders. We have been actively participating to the workpackage on conventional neutrino
beams with reqular presentations on the beamline development with useful interactions with other users
(NA62, NUTAG) and CERN experts. Contributing to the workpackage on searches for new physics.

The nuSTORM/ENUBET workshop in Cagliari. A special joint plenary session with nuSTORM was organised on
9/9/2021. It was an important occasion to get a broad visibility and discuss possible scenarios in which both
experiments could be fed by mesons produced in a common target station. A scenario involving a siting at the
muon colliders test facility at the PS was discussed.

Recently submitted the ENUBET physics case to the Snowmass 2021 DPF Community Planning Exercise [10].

We started a collaboration with the PIMENT project, funded by the French ANR for the next 3 years with Thomas
Papaevangelou from CEA-Saclay as PI. It will deal with the possibility of upgrading the ENUBET t,-layer with a
detector based on the PICOSEC thin gap Micromegas detector to achieve sub-100 ps time resolutions on large
areas.

Two new PhD students from Thessaloniki University (advisor Prof. S. Tzamarias) will start working in ENUBET on
waveform reconstruction and the identification of forward muons from pion decays.

38



Final considerations and outlook

1) a very flexible and powerful optimization framework based on genetic algorithms implemented for
the beamline — final design from improved FOM/statistics/par. space.

2) a working Framework to constrain the Flux from the lepton observables. Realistic simulation of the
beamline and the detector and algorithms — next: final systematics budget.

3) demonstrator: tight schedule ahead but feasible (main bottleneck scintillators)

4) publication of the ENUBET baseline (CDR) expected by end 2022

A. Longhin, ENUBET, 12/04/22 39
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ENUBET-nuSTORM synergies

nuSTORM can be seen (simplistically) as an “ENUBET without a hadron dump” where pions and muons are
channeled into a ring. Large room for smart ideas to match the requirements of the two experiments

0 tons > (k- ) S\K decays B 71" neutrino J * common points: proton extraction line,
| ~~e'/yr detector target station, 1tstage of meson focusing,
(‘rotons = (K-, ) — wdecays =V v—=s neutrind proton dump, neutrino detector (possibly)
’ detector
&
Target,
Decay region Hadron dump For::s:inn;xtraction, energy, i:: ﬁsfer Neutrino detector
* But also significant B
differences (and scale) Yes. Dumps j in addition = ioy extraction (+ quad triplets bt
ENUBET ~40 m. Instrumented. ~ Preventing a (small) v, “slow” in bursts (+horn) similar ~|1n.?‘|]an: (S'jmfe Flexibility)
pollutionto K, - v, 400 GeV A
nuSTORM sR:cli%z;eg fbty;;etﬁright :.\rl:;é Felsffi?}t F[‘e e F?}i}té AL R similar figzli(l]ar:\bf?; r?lttarget
(180 m). giflux parents. LG (ring straight section)
ENUBET ‘mm,,,, 4 Prima Near detoctor
‘ e \. Engineering studies starting within
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Fluxes decomposition

NuSTORM: vary the channeled
muon energy from 1 to 6 GeV/c

ENUBET narrow-band off-axis
technique:

Bins in the radial distance from
the center of the beam — single-
out well separated neutrino
enerqy spectra — strong prior for
energy unfolding, independent
from the reconstruction of
interaction products in the
neutrino detector. “Easy” rec.
variable.

A kind of “off-axis” but without
having to move the detector
(thanks to the low distance of the
detector) !
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Updated light readout scheme

From lateral to frontal light collection

Safer for injection molding. More uniform, efficient.
Each tile has readout grooves and “transit” grooves.
Readout grooves on alternate sides.

Staggering for the two tiles at larger .

A. Longhin, ENUBET, 12/04/22

GEANT4 optical simulation
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Forward region muons reconstruction

Range-meter after the hadron dump. Extends the tagger acceptance in
the forward region to constrain npzdecays contributing to the low-E V..

Detector (u-station)

x10°

[particles/pot]

[particles/pot]

200 em 200 em v lsolcm Example of the firsll configuralion I
under investioation

b
A\ J
F 3

y

The most upstream (hottest) detector

' ) needs to cope with a muon rate of ~ 2
- P oo MHzfcm? and about 10 1 MeV-n, fcm?.
Y (mm) E (MeV) g:ml_m

Design being defined. Possible candidate: Crereckor
fast Micromegas detectors employing e ™ Cathode
Cherenkov radiators + thin drift gap ot o o fﬁf“j[ g Mesn
(PIMENT). Bonus: excellent timing. fmpllicatin  mépm el iy rode B

——{ Preamplifier + DAQ -

A. Longhin, ENUBET, 12/04/22 45
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ENUBET: prototypes at the CERN-PS
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ENUBET: prototypes at the CERN-PS

_Nsee Nmax
Nﬁred = Nma,x (1 — € a/ )

N
N
(=)

n
8

v
180
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Data
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40
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x2/ ndf 1.731/1
Offset data —0.7268 + 0.9395
Slope data 40.68 + 0.624

o *
b U

New SiPMs under test (NUV, RGB high density and low cross talk from FBK)

1.5 2 25

A. Longhin, ENUBET, 12/04/22
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FLUKA irradiation studies

Detailed FLUKA simulation of the setup

Guided the design of the detector
technology for the demonstrator

Good lifetime of instrumentation and
focusing elements achieved.

Neutrons in the tagger

1012

3000 3500 4000 4500 5000 5500 6000 6500

BPE shielding has a reduction effect ~ x 20
W.r.L, to the single dipole beamline
7x10" n/POT/cm?~ 10 X reduction

(7 x10° n/cm? for 102 POT)

A. Longhin, ENUBET, 12/04/22
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ENUBET: lepton reconstruction Talk by . Pupill

GEANT4 simulation of the detector, validated by prototype tests at CERN in 2016-2018.
Clustering of cells in space and time. Treat pile-up with waveform analysis. Multivariate analysis.

Hit map for e* F. Pupilli et al., PoS NEUTEL2017 (2018) 078
.A . "n'- : .f.' . -,‘. Y,. "“‘.."i :T-’- . :”‘-w I".' ' . ‘ —" ; -I "H inner e.m. layer I
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https://indico.cern.ch/event/855372/contributions/4499004/attachments/2306195/3923454/Pupilli_ENUBET_tagger-detectors_2021-09-09.pdf

Proton extraction R&D for horn focusing

before LS2: burst mode slow extraction achieved at the SPS. Iterative feedback tuning allowed to reach ~10 ms
pulses without mtroducmg losses at septa

CERN-TE-ABT-BTP, BE-OP-SPS
Velotti, Pari, Kain, Goddard

Initial condition
| —— Autospill 3" iteration |
10 ms square pulse

><1n”
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+ i i
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A. Longhin,

Trimming the new tune into the ! !
“T'machine = enabling burst extraction. &1~
| | 4
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PhD thesis of M. Pari (UniPD + CERN doctoral).
Defended 23/2/21.
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Horn optimization

* New double-parabolic geometry (formerly MiniBooNE-like)

Rs

R:

* New genetic algorithm implemented successfully to sample

the large space of parameters. e

* FoM is~number of collimated K* with p ~8.5 GeV/c
» Convergence in O(100) iterations
* First candidate designs worked out

E
£ _ _
-

We were able to reach values of the standalone FoM ()
of x 3 higher than the static case. These results confirm an

|

improvement w.r.t. early studies.

When plugged to the existing beamlines the gain factor

reduces to only x 1.5 =» next step: dedicated beamline target =
optimization (+) to profit of the horn-option initial gain = seiectea x ac g :
e ey Not dependent on full beamline
larger apertures for initial quads. o Fast to compte
® Good for relative optimization
Can extend the same systematic optimization tool. Selected K at

® Requires full tracking down to tagger
@ Yields exact flux gain between two configurations

|||||||||

static beamline

first quadrupole
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Accelerator based neutnno beams

NN

Pion based neutrino beams have a ~60 y long
history. Lots of physics done at different
energies.

Enormous increase in intensity —
a leap in technology and complexity

More “brute force” than conceptual
innovations. Still OK in the era of “statistical
errors-dominance” and “large 6,," but ...

New future challenges (b,,, searches) require

timely changes or at least “adjustments” in
this strategy.

v,/GeV/em?/pot at 100 km
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Precision for the Hyper-K/DUNE era

Improving the knowledge of (electron) neutrino

and anti-neutrino cross sections in the GeV

region strengthens significantly the physics reach

of next generation Super-beams in construction \
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ENUBET and nuSTORM

F. Di Lodovico, Neutrino Telescopes 2021
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To extract the most physics from DUNE and Hyper-Kamiokande, a complementary programme of
(see also the European A _experimentation to determine neutrino cross-sections and fluxes is required. Several experiments aimed at
Strategy Physics Briefbook, determining neutrino fluxes exist worldwide. The possible implementation and impact of a facility to

arXiv:1910.11775)

mﬂasun{ neutrino cross-sections at the percent Icw;:l] should continue to be studied.



Waveform analysis

The energy is now reconstructed as it will happen for real data i.e. considering the amplitudes digitally-sampled
signals at 500 MS/s. Pile-up effects treated rigorously.

Energy spectrum layer 3

Matching between true
level energy deposits
from GEANT4 and fully
reconstrucred
waveforms

Peak finding efficiencies:
Slow ~ 4.5x 103 POT in 2s
Fast ~ horn ~ 10 x slow

=

10*

10°F

1%

G4 simulation

s Delected ES

0 5 10

Matching between true
and reconstructed time
(500 MS/s). 270 ps.

Time residuals layer 3

= [
350001

30000, E—
25000, E—
20000, E—
15000 E—
10000 f—

sooof-

C-uu

Time residuals layer 3

000&

O

Constant 2 856404 + 0458401
Mesn 00115 £ 04
Sigma 0.27212 0.0007

15 20 25 30 35 40 E‘l[iqevs]ﬂ 5 4 -3 -2 A
Transfer line and extrac- || Hit rate per | detection -effi-
tion scheme LCM ciency

TLR5 slow 1.1 MHz 97.4%

TLR5 fast 10.4 MHz 89.7%

TLR6 slow 2.2 MHz 95.3%
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Tagged neutrino beams

Profit of advances/affordability of excellent
timing capabilities over large areas —

- time coincidences of v_and e*

Example with reconstructed e*
2.5x10' pot /2s with 20% eff. S/N 1.6

genuine K, cand. : — 1 every ~ 77 ns
background K ,cand. ~ 0.6 x — 1 cand / ~ 130 ns

Assumed time resolution:; 0.4 @ 0.4 ns

Flavour and energy determln!tloﬁ at
interaction level are enriched by
information at the decay level.

Distance corrected At between tagged
leptons and neutrino interactions

\ t.<(tag/det)= 0.4/0.4 ns, e+ each 7.7e+01 ns, $/N untag 1.6 tag 5.7 efftag = 0.2
1 40j —all
120 — K true
100~ — K5 bckg
80/~
60
a0l Toy MC
20 _
L[y ;Ih”b il ﬁLu"Jl ] Iy
I | \ | | Wjﬁ. \ I

910 8 6 4 2 0 2 4 6 8 10
Delta t (ns)



Toy simulation

Parameters:

Timing res of tagger/detector
Reconstruction eff (inc. acceptance)
SIN of reconstructed leptons

TODO:

Use information from the reconstructed
lepton candidates to cross check and
refine

Show distributions of leptons after timing
cut (improvement in purity)

1. (tag/det)= 0.1/0.4 ns, e+ each 7

Te+

01 ng

. S/N untag 1.6 tag 7.7 efftag = 0.2

180

160

S/N
1.6 - 7.7

140

120

100

80

60

I|III|III|III|III|III|III|III|I

40

—all
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[

EHWIEHHE i Jl ’FIIH@

A D

10—8—6—4—2

0

2 4 6 8 10
Deltat (ns)
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Full simuation with true-level electrons

Based on GEANT4. Estimates the spread due to the non collinearity of products
(no contribution from experimental smearing of time measurements)

Ke3 selection based on the @ 9.
4
G4IGATAG shared data structure
hdt
1 4/2/21 20— Entries ndt 251
. . . _ Mean -0.09032
Time coincidences E Std Dev 0.1841
18__ Underflow 8
= Overflow 0
16— %2/ ndf 41.7/38
C Prob 0.313
. 145 Sonsant -0 oség‘rott;dgg
Spread is b Sigma 0.1275 + 0.0034
consistent with = /
estimates from 10;—
the 2015 paper 8 127 ps!
(difference in oF
paths btw lepton E
and neutrino) M=
2
0:1 |_|L [I—ll”l I”Hll—] L1l I L1 1 l 11 I 1 | I —— I I —— l Ll
-1 -08 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1
A. Longhin, ENUBET-WP5, 14/2/21 17

A. Longhin, ENUBET, 12/04/22 57



counts

Pion sample

TLR6v4

Particles hitting the tagger at true level

p distribution

3 :
TS e* background
i |
; p* background (halo)
102 it N, | b signal (Kyep)
z K 4 ™ N background
= ; 1 signal (From ¥)
i.r'-L'!I: : i | .J ,__" 1
" BE i STiePE . W “Lu"?fﬁ.".?.
i \ b iha’
I-! N L i T
L T i l |
AR, ]
N W N i
i il I il Lig
2 4 6 1
p

counts

102

10!

100

Z distribution |

sig pos
[ sig mu
sig pi

By selecting events not classified as e* or muons (already available) we can access the sample of pions from kaon
decays where S/B could be good (yellow component) and efficiency high (large B.R.) — independent constraint

on the kaon yields — fluxes of ve and v,. In the pipeline.




ENUBET: flux constraint

Not directly taggable components:
1) v, from K™ in the

— reduce by tuning the dump geometry/location

2) v, from K* in front of the tagger

(after
accounted for with simulation (~geometrical).

Uncertainty reduction for the tagged flux
component

Constrain the flux model by exploiting correlations
between the measured lepton distributions and the
flux — Fit the model with data and get energy
dependent corrections.

/2" bend) ~10% contamination —

e*n
V, ¢ Spectra DY,
v, CC “
‘g 0.0014 — Tgt ‘
S AI_,_[“_|_ —— Tripl
7 ooz — After1stBending
0.001 — After2ndBendin
tagg able ‘l—|\ —— Tagger ?
0.0008 hDump
006 '|_|_L — pDump
E e L
St e e~ o [T
= T
8 osF I Dal . Eeackinn.
= 0% B Ret Traction
§ nv«:: i
w T —— ||
0 1 2 3 4 5 [} 7 E(VE) (Ge\/)g
=eel Muon z B .
e 2 E,(bin 1
An example: L by
Each histogram component e E,(bin 2)
corresponds to a bin in |
neutrino energy - E,(bin 3)
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o
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Impact Position (dm)
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