### Longitudinally segmented shashlik calorimeters with SiPM readout: the SCENTT experiment



Claudia Brizzolari - 30 September 2016, Padova

#### **The SCENTT-ENUBET project** Shashlik Calorimeters for Electron Neutrino Tagging and Tracing, part of Enhanced NeUtrino BEams from kaon Tagging project - ERC-Consolidator Grant-2015, n° 681647 (PE2)



#### Goal: improve the current knowledge of the $\sigma_v$ at ~GeV to 1%

30 September 2016, Padova

Università dell'Insubria, C.Brizzolari



#### **The Detector**

~ 50 m at 8 GeV  $\rightarrow$   $K_{e3}$  only source of  $\nu$ 

→limited cost

→good energy resolution

geometrical adaptability

### **The Detector**

#### **Shashlik calorimeter**



#### **Compact readout based on SiPM**

- Direct fibre-SiPM coupling
- ✓ Readout embedded in the calorimeter bulk → longitudinal segmentation

Rate capability > 500 kHz/cm<sup>2</sup>

- Fe + plastic scintillator
- EM + hadronic







Sensitive area 1x1 mm<sup>2</sup> 2500 20x20  $\mu m^2$  cells

- Each SiPM coupled with one WLS fibre
- Custom PCBs

## Test Beam July @ CERN PS – T9 beamline: prototype



- EM calorimeter
- 30 cm, 3 modules
- 12 basic units
- Fe + SCIONIX EJ-200 or BC412



Università dell'Insubria, C.Brizzolari

# Test Beam July @ CERN PS – T9 beamline: tests performed

- Mixed beam: electrons, muons, pions
- Energy scan 1 5 GeV
- Different overvoltages to check for SiPM saturation
- Two readouts: charge integrating ADC (V792, CAEN) and digitizer (V1730, CAEN)

## Test Beam July @ CERN PS – T9 beamline: results



### $e^{-}/\pi$ separation



# Nuclear counter effect (NCE)



Nuclear counter effect studied in August 2015 on another prototype. Red and black lines: run at 5 GeV without WLS fibres Blue line: standard run at 5 GeV

[from: "A compact light readout system for longitudinally segmented shashlik calorimeters", published on Nuclear Instruments and Methods in Physics Research: Section A]

# **Conclusions and next plans**

- no Nuclear Counter Effect, E resolution = 19% /  $E^{\frac{1}{2}} \rightarrow OK!$
- investigate electron efficiency and purity in EM calorimeter
- testbeam scheduled for November 2016 @ CERN on EM + hadronic calorimeter  $\rightarrow$  verify e<sup>+</sup>/ $\pi$



Comparison between the efficiency (in black) and the purity (in red) obtained varying the energy cut [Alessandro Berra]

## Appendix



[Andrea Longhin]

# Appendix





Università dell'Insubria, C.Brizzolari