

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

ENUBET: heading toward the experiment proposal

F. Terranova^(*) on behalf of the ENUBET Collaboration

(*) University of Milano-Bicocca & INFN Milano-Bicocca

What is ENUBET?

ENUBET is the project for the realization of the first monitored neutrino beam.

- "Monitored neutrino beams are beams where diagnostic can directly measure the flux of neutrinos because the experimenters monitor the production of the lepton associated with the neutrino at the single-particle level. " (Wikipedia)
- K^+ χ_{e} χ_{e}
- ENUBET: ERC Consolidator Grant, June 2016 May 2021 (COVID: extended to end 2022). PI: A. Longhin;
- Since April 2019: CERN Neutrino Platform Experiment NP06/ENUBET and part of Physics Beyond Colliders;
 - Collaboration: 60 physicists & 13 institutions; Spokespersons: A. Longhin, F. Terranova; Technical Coordinator: V. Mascagna;

We are no more in the 20th century: systematics do matter!

Next generation long-baseline experiments (DUNE & HyperK) conceived for precision *v*-oscillation measurements:

- test the 3-neutrino paradigm;
- determine the mass hierarchy;
- test CP asymmetry in the lepton sector;

Very good knowledge needed!

Moreover ν -interaction models would benefit from improved precision on cross-sections measurements

The purpose of ENUBET: design a narrow-band neutrino beam to measure

- neutrino cross-section and flavor composition at 1% precision level;
- neutrino energy at 10% precision level;

From the European Strategy for Particle Physics Deliberation document:

To extract the most physics fromDUNE and Hyper-Kamiokande, a complementary programme of experimentation to determine neutrino cross-sections and fluxes is required. Several experiments aimed at determining neutrino fluxes exist worldwide. The possible implementation and impact of a facility to measure neutrino cross-sections at the percent level should continue to be studied.

ENUBET: the first monitored neutrino beams

ERC project focused on:

measure positrons (instrumented decay tunnel) from $K_{e3} \Rightarrow$ determination of v_e flux;

* As CERN NP06 project:

extend measure to muons (instrumented decay tunnel) from $K_{\mu\nu}$ and (replacing hadron dump with range meter) $\pi_{\mu\nu} \Rightarrow$ determination of ν_{μ} flux;

Main systematics contributions are bypassed: hadron production, beamline geometry & focusing, POT;

The 2020 breakthrough: a high-intensity horn-less neutrino beam

When we first proposed ENUBET, we were aiming at a beam where the leptons in the decay tunnel are produced at **slow rate** because we were afraid of pile-up and saturation of the instrumentation in the tunnel <u>Original design</u>: a horn pulsed every 100 ms with a 10 ms pulse ("burst proton extraction")

First demonstration of this proton extraction scheme in 2018 at CERN-SPS

M. Pari, M. A Fraser et al, IPAC2019

<u>2020 design (</u>"static focusing system"): a neutrino beam without a horn where focusing at 8 GeV/c is accomplished by quadrupoles (like e.g. NuTeV but at much lower energy!)

The design was so successful that it achieved a flux that is just 2 times smaller than the corresponding hornbased design but protons are extracted in 2 seconds!! Rates reduced by more than one order of magnitude!

The ENUBET beamline: (details in A. Branca ICHEP2022)

better collimated beam + reduced muons background + reduced v_e from early decays;

Transfer Line:

- optics optimization w/ TRANSPORT (5% momentum bite centered @ 8.5 GeV) G4Beamline for particle transport and interactions;
- FLUKA for irradiation studies, absorbers and rock volumes included in simulation (not shown above);
- optimized graphite target 70 cm long & 3 cm radius (dedicated studies, scan geometry and different materials);
- tungsten foil downstream target to suppress positron background;
- tungsten alloy absorber @ tagger entrance to suppress backgrounds;

Dumps:

- Proton dump: three cylindrical layers (graphite core -> aluminum layer -> iron layer);
- Hadron dump: same structure of the proton dump -> allows to reduce backscattering flux in tunnel;

Full facility implemented in GEANT4:

 \sim 1.5X w.r.t. previous results

K⁺ XY at Tunnel Entrance

- Controll over all paramaters;
- Access to the paricles histories;
- assessment of the nu flux systematics

v_e^{CC} energy distribution @ detector

A total v_e^{CC} statistics of 10^4 events in ~3 years @ SPS with $4.5 \cdot 10^{19}$ POT/year; ٠ 500 tonne detector @ 50 m from tunnel end;

ProtoDUNE-SP (NP04)

Contributions to v_e^{CC} from the different parts of the **ENUBET** facility

v_{μ}^{CC} energy distribution @ detector

Ē $-v_{\mu}$ from K 6) $- v_{\mu}$ from π ш 3.5 0.5 (GeV)

select slices in R windows

ਜ਼ੋ 0.22⊢

0.2

0.18 ิ 0.16⊢

0.14

₿ 0.12

0.08 0.06 0.04

0.02

Precise determination of E_{ν} : no need to rely on final state particles from v_{μ}^{CC} interaction

8-25% E_{ν} resolution from π in the DUNE energy range

 $30\% E_{\nu}$ resolution from π in HyperK energy range (DUNE optimized TL w/ 8.5) GeV beam):

ongoing R&D: Multi-Momentum Beamline (4.5, 6 and 8.5 GeV) => HyperK & DUNE optimized;

The ENUBET beamline: optimization studies

An optimization campain is ongoing:

- Goal: further improvement of the π/K flux at tunnel entrance while keeping background level low;
- Strategy: scan parameters space of beamline to maximize FOM;
- Tools: full facility implemented in Geant4 -> controll with external cards all parameters -> systematic optimization with developed framework based on genetic algorithm;

Rates @ Tunnel entrance for 400 GeV POT	$\pi^+ [10^{-3}]$ /POT	<i>К</i> + [10 ⁻³]/РОТ
Design	4.13	0.34
Optimized	5.27	0.44
Background hitting tunnel walls	e ⁺ [10 ⁻³]/K ⁺	$\pi^+[10^{-3}]/K^+$
Background hitting tunnel walls Design	e ⁺ [10 ⁻³]/K ⁺ 7	π ⁺ [10 ⁻³]/ <i>K</i> ⁺ 59
Background hitting tunnel walls Design Optimized	e ⁺ [10 ⁻³]/K ⁺ 7 2	π ⁺ [10 ⁻³]/K ⁺ 59 35

Preliminary

- About 28% gain in flux -> 2.4 years to collect 104 u_e^{CC} ;
- Reduced backgrounds, but similar to signal shapes -> next step:
 ⁹
 ⁹
 ⁹

Decay tunnel instrumentation prototype & tests

Prototype of sampling calorimeter built out of LCM with lateral WLS-fibers for light collection

Tested during 2018 test-beams runs @ CERN TS-P9

Large SiPM area (4x4 mm²) for 10 WLS readout (1 LCM)

SiPMs installed outside of calorimeter, above shielding: avoid hadronic shower and reduce (factor 18) aging

Status of calorimeter:

- Iongitudinally segmented calorimeter prototype successfully tested;
- photon veto successfully tested;
- custom digitizers: in progress;

Choise of technology: finalized and cost-effective!

Lepton reconstruction and identification performance

Full GEANT4 simulation of the detector: validated by prototype tests at CERN in 2016-2018; hit-level detector response; pile-up effects included (waveform treatment in progress); event building and PID algorithms (2016-2020);

- Large angle positrons and muons from kaon decays reconstructed searching for patterns in energy depositions in tagger;
- Signal identification done using a Neural Network trained on a set of discriminating variables;

 K_{e3} BR ~5% and K make ~5 – 10% of beam composition

v-Flux: assessment of systematics

et Pet

Monitored ν flux from narrow-band beam: measure rate of leptons \Leftrightarrow monitor ν flux

- build a Signal + Background model to fit lepton observables;
- include hadro-production (HP) & transfer line (TL) systematics as nuisances;

Used hadro-production data from NA56/SPY experiment to:

- Reweight MC lepton templates and get their nominal distribution;
- Compute lepton templates variations using multi-universe method;

v-Flux: impact of hadro-production systematics

The ENUBET demonstrator

Weight ~7 t

5% Borated Polyethylen arcs

Machined iron for calorimeter absorber layers

- Detector prototype under construction, to demonstrate:
 - Performance / scalability / cost-effectiveness;

Test-beam @ CERN in October 2022

- > 1.65 m longitudinal & 90° in azimuth;
- > 75 layers of: iron (1.5 mm thick) + shintillator (7 mm thick) => 12X3 LCMs;
- central 45° part instrumented: rest is kept for mechanical considerations;
- * modular design: can be extended to a full 2π object by joining 4 similar detectors (minimal dead regions);
- new light readout scheme with frontal grooves instead of lateral grooves:
 - driven by large scale scintillator manufacturing: safer production and more uniform light collection;
 - performed GEANT4 optical simulation validation;
- scintillators: produced by SCONIX and milled by local company;
- ENUBINO: pre-demonstrator w/ 3 LCM tested @ CERN in November 2021 to study uniformity and efficiency;

Looking ahead

- Complete our homework (2022-23) [ERC project + NP06/ENUBET]
 - Assessment of sub-dominant systematics
 - Horn-based beam
 - Validation of the demonstrator with the ENUBET custom electronics
 - Publication of the final papers on (1) beamline, (2) multi-momentum beamline, (3) cross section performance and (4) validation of the demonstrator
- Provide a design for the hadron dump and lepton tagging, including the tagged neutrino beams [ENUBET/PIMENT – see talk from Alexandra Kallitsopoulou]
- Study the physics performance of an ENUBET-based beam with ProtoDUNE-SP or ICARUS at FNAL [NP06/ENUBET]
- Deliver the Conceptual Design Report using CERN (SPS+ProtoDUNE) as the baseline implementation (2023-24). The site-dependent (CERN) implementation will be carried out by NP06/ENUBET in the framework of Physics Beyond Collider. It includes costs, infrastructures, engineering of the beamline components, beam transport toward the neutrino detector, safety and activation, shielding and decommissioning costs
- We aim at an experimental proposal in 2024 to have ENUBET up and running at the beginning of the DUNE and HyperKamiokande data taking.