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Outline
• Beamline simulation 
• Experimental validation of detector prototypes  
• Updated physics performance

The goal of ENUBET is to demonstrate the technical feasibility and physics 
performance of a neutrino beam where lepton production at large angles is 
monitored at single particle level:

(Ke3 decays) K+ → e+
νe π0

Two pillars:
⚫ Build/test a demonstrator of the instrumented decay tunnel
⚫ Design/simulate the layout of the hadronic beamline

ENUBET Collaboration:  60 physicists, 12 institutions

Enhanced NeUtrino BEams from kaon Tagging

Since 2019, ENUBET is a 
CERN Neutrino Platform 
Experiment:
NP06/ENUBET

to tagger to neutrino detector



A narrow-band beam for the precision era of ν physics

Absolute flux of νe and 
ν
μ

at the 1% level 

Remove the leading
source of uncertainty in
neutrino cross section
measurement

Energy of the neutrino 
known at the 10% level

The ideal tool to study 
neutrino interactions 
in nuclei  

Flavor composition 
known at the 1% level

The ideal tool to study 
NSI and sterile 
neutrinos at the GeV 
scale
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⚫ Monitor the decays in which ν are produced event-by-event
⚫ “By-pass” uncertainties from POT, hadro-production, beamline efficiency
⚫ Fully instrumented decay region → νe flux prediction = e+ counting
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The ENUBET beamline (baseline option)

Target and 
W screen

Collimators

1st quadrupole
triplet

2nd quadrupole
triplet

Dipole

to proton dump

to ν
detector• 7.4° bending

▪ Proton driver: CERN (400 GeV), FNAL (120 GeV), J-PARC (30 GeV)
▪ Target: Be, graphite target. FLUKA
▪ Focusing:

• Horn: 2 ms pulse, 180 kA, 10 Hz during the flat top [not shown in fig.]
• Static focusing system: a quadrupole triplet before the bending magnet

◼ Transfer line
• Kept short to minimize early K-decays and those of off-momentum mesons out of 

tagger acceptance (untagged neutrino flux component)
• Optics: optimized with TRANSPORT to a 10% momentum bite centered at 8.5 

GeV/c
• Particle transport and interaction: full simulation with G4Beamline
• Normal-conducting magnets (numerical aperture<40 cm): Two quadrupole triplets, 

one (or two) bending dipole
▪ Decay tunnel: r = 1 m, L=40 m, low power hadron dump at the end
▪ Proton dump: position and size under optimization

20 m

40 m
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The ENUBET beam line – particle yields

Focusing 
system

π/pot
(10-3)

K/pot
(10-3)

Extraction 
length

π/cycle
(1010)

K/cycle
(1010)

Proposal (b)

Horn 97 7.9 2 ms (a) 438 36 x 2

“static” 19 1.4 2 s 85 6.2 x 4
(a) 2 ms at 10 Hz during the flat top (2 s) to empty the accelerator after a super-cycle.
(b) A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155.

The horn-based option still allows ~ × 5 more statistics but the static option gained 
momentum since initial estimates were ~ × 4 too conservative with respect  to 
present simulations!
Advantages of the static extraction:
• No need for fast-cycling horn
• Strong reduction of the rate (pile-up) in the instrumented decay tunnel
⚫ Pave the way to a “tagged neutrino beam” → ν interaction at the detector  

associated in time with the observation of the lepton from the parent hadron 
in the decay tunnel (more later)

• Monitor the μ after the dump at % level (flux of νμ from π) [under evaluation]
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The static beamline

p (GeV/c)

K+π+

Loss due to K 
decays

Low energy 
high angle π

Momentum bite
(8.5 ± 10%) GeV/c

p+

p
e+

π+

p
e+

µ+

p (MeV/c)

Particle budget
at tagger 
entrance K+  at tagger entrance

1 m
radius

Divergence of the kaon beam

Spectra at: 

tagger entrance 
tagger exit

G4Beamline simulation for particles at the entrance and exit of the dacay tunnel 

K+  at tagger exit

p (GeV/c)
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Beamline studies
Additional static focusing options
Put all inputs/schemes together 
→ pindown the best design in terms of physics and technical feasibility

Example: 2 dipoles scheme with an intermediate quadrupole
⚫ improve the quality of the beam in the tagger scheme
⚫ larger bending angle (15.1°) reducing background from muons, less probable 

for neutrinos produced on the 0° line to reach the detector

Preliminary
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The ENUBET tagger

Calorimeter
Longitudinal segmentation
Plastic scintillator + Iron absorbers
Integrated light readout with SiPM

→ e+/π±/μ separation

K+

e+

π0

νe

Integrated photon veto
Plastic scintillators
Rings of 3×3 cm2 pads 
→ π0 rejection

e+ (signal) topology π0 (background) topology π+ (background) topology

Ultra Compact Module 
3×3×10 cm3 – 4.3 X0
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The tagger: shashlik with integrated readout

10 cm = 5 X0

9
 c

m

e+

t0-layer

CERN PS test beam Nov 2016

UCM: ultra compact module. 
SiPM and electronics embedded in the shashlik calorimeter

Beam spot
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Test beam results with shashlik readout

Ballerini et al., 
JINST 13 (2018) P01028

Calorimeter prototype performance with test-beam data at CERN-PS T9 line 2016-2017

Tested response to mip, e and π-

⚫ e.m. energy resoluton: 17%/√E (GeV)
⚫

⚫ Linearity deviations: <3% in 1-5 GeV 
range

⚫

⚫ From 0 to 200 mrad → no significant 
differences

⚫

⚫ Work to be done on the fiber-to-SiPM 
mechanical coupling → dominates the 
non-uniformities 

• Equalizing UCM 
response with mips 
MC/data already in 
good agreement

• Longitudinal profiles 
of partially contained
π reproduced by MC at 
10% precision
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Polysiloxane shashlik prototypes
Increased resistance to irradiation (no yellowing), simpler (just pouring + reticulation)
A 13X0 shashlik prototype tested in October 2017 (first application in HEP) and May 2018.

15 mm thick scintillators 
to compensate reduced light yields

WLS-SiPM
optical 
coupling
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SiPM irradiation measurements at INFN-LNL and CERN

A shashlik calorimeter equipped with irradiated 
SiPMs later tested at CERN-PS T9 in Oct 2017 

Electrons
mip

• By choosing SiPM cell size and scintillator thickness (~light yield) 
properly mip signals remain well separated from the noise 
even after typical expected irradiation levels

• Mips can be used from channel-to-channel intercalibration
even after maximum irradiation. 

1 cm thick scintillator, 
15 mm cell, 
1.2 x 1011 n-1MeV-eq/cm2

Dark current vs bias at increasing n fluences

(FBK-HD-RB Advansid)
F. Acerbi et al., Irradiation and performance of RGB-
HD SiliconPhotomultipliers for calorimetric 
applications , JINST 14 (2019) P02029

⚫ At the CN Van de Graaf on July 2017→ 1-3 MeV n with fluences up to 1012/cm2 in a few 
hours 
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The tagger: lateral readout option

9
 c

m

Light collected from scintillator sides and bundled to a single SiPM reading 10 fibers 
(1 UCM). 
SiPM are not immersed anymore in the hadronic shower → less compact but much 
reduced neutron damage (larger safety margins), better accessibility, possibility of 
replacement. Better reproducibility of the WLS-SiPM optical coupling.

Sampling calorimeter with 
lateral WLS light collection

May 2018, CERN-PS test beam
Large SiPM for 10 WLS
4x4 mm2
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Achievable neutron reduction with 
lateral readout

–--------- entering CAL
- - - - - - exiting shielding ~ at SiPM in lateral r/o 
mode

Neutron energy

⚫ 30 cm of borated polyethylene in front of 
SiPM

⚫ FLUKA full simulation. 400 GeV protons.

⚫ Very good suppression especially below 100 
MeV.

⚫ Factor ~18 reduction averaging over 
spectrum. 

Si n damage weight function x 1e-10

x 18

preliminary

shield

FLUKA

Neutron longitudinal position along the tunnel
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e- energy resolution

Preliminary results

Test beam results with lateral readout option
September 2018 CERN-PS: a module with hadronic calorimeter for pion containment and 
integrated t0-layer

integrated t0-layer

SimulationEfficiency maps

⚫ Good signal 
amplitude 

⚫ Checking impact of 
light connection 
uniformity and 
reproducibility of 
WLS-SiPM optical 
match (In progress).

Resolution PID
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The tagger 
demonstrator

WLS fibers

t0-layers

3 layers calorimeter

⚫ Length ~ 3 m
⚫ allows the containment 

of shallow angle 
particles in realistic 
conditions

⚫ Fraction of ϕ
⚫ Due by 2021
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The photon veto

⚫ γ / e+ discrimination + timing
⚫ scintillator (3×3×0.5 cm3) + WLS Fiber (40 cm) + 

SiPM

⚫ light collection efficiency → >95%
⚫ time resolution → σt ~ 400 ps
⚫ 1mip/2mip separation  

At CERN-PS T9 line 2016-2018

La
ye

r 
2

Layer 1

Trigger: PM1 + VETO +PM2

• π-
e+e-

• charge exchange: π - p → n π 0 (→ γγ)

2 mip

1 mip

→ Input for 
simulations
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Ke3 positrons reconstruction
Full GEANT4 simulation of the detector, validated by prototype tests at CERN in 2016-2018.
Includes particle propagation and decay, from the transfer line to the detector, hit-level 
detector response, pile-up effects.

Analysis chain
Event Builder

e/π/µ separation

e/γ separation

Identify the seed of the event (UCM with largest energy 
deposit in inner layer and > 20 MeV). Cluster neighboring 
cells close in time. Iterate on not-yet-clustered cells.
Multivariate analysis based on 6 variables (pattern of the 
energy deposition in the calorimeter) with TMVA
Signal on the tiles of the photon veto (0-1-2 mip)

εgeom 0.36

εsel 0.55

εtot 0.20

Purity 0.26

S/N 0.36
φ cut

0.46

Instrumenting half of the decay tunnel: 
Ke3 e

+ at single particle level with a S/N = 0.46

Ke3
K other dec.
π+ 

π-

e-

e+

γ

µ+ 

p
n 

Before tuning of shielding
Reco level
full sim.
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From pions

From kaons

νµ νe

98.4% from 
kaons
µ contribution 
is small
(tunnel is 
“short”)

Neutrino events per year at the detector
• Detector mass: 500 t (e.g. Protodune-SP or DP at CERN, ICARUS at Fermilab,  WC at J-

PARC) 
• Baseline (i.e. distance between the detector and the beam dump) : 50 m
• 4.5 x 1019 pot at SPS (0.5 / 1 y in dedicated/shared mode) or 1.5 x 1020 pot at FNAL

1.2 million νμ Charged Current per year 14000 νe Charged Current per year

• νµ from K and π are well separated in energy (narrow band)
• νe and νµ from K are constrained by the tagger measurement (Ke3, mainly Kµ2).
• νµ from π : µ detectors downstream of the hadron dump  (under study) 
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νμ CC events at the ENUBET narrow band beam
The neutrino energy is a function of the distance of the neutrino vertex from the beam 
axis. 

ra
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The beam width at fixed R ( ≡ ν energy 
resolution for π component) is: 

⚫ 8 % for r ~ 50 cm, <Eν>~ 3 GeV
⚫ 22% for r ~ 250 cm, <E ν > ~ 0.7 GeV

M
ean energy

DUNE
HK

⚫ + Binning in R allows to explore the 
energy domains of DUNE/HK and 
enrich samples in specific processes 
(quasi-elastic, resonances, DIS) for 
cross section measurements
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Time tagged neutrino beams

Presently with 2.5 × 1013 pot / 2s slow extraction:
genuine Ke3 cand. : 80 MHz → 1 every ~ 12 ns
background Ke3 cand. ~ 2 x → 1 cand. every ~ 4 ns

With δ=0.5 + 0.5 ns resolutions: already interesting!
S/N ratio will likely improve with further tuning.

Δ

e+ νe
CCTime coincidence of 

νe
CC and e+

|δt - Δ/c| < δ

δ = combined t-resolution (e+ tagger and ν detector) 

⚫ Event time dilution → Time-tagging
⚫ Associating a single neutrino interaction to a tagged e+ with a
small “accidental coincidence” probability through time coincidences
Eν and flavor of the ν measured ''a priori'' event by event.
Compare “Eν from decay kinematics ” ⇿“Eν from ν interaction products ”

S+B
S

0.5/0.5 ns

Toy MC
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Conclusions and next steps
ENUBET is a narrow band beam with a high precision monitoring of the flux at source 
(O(1%)) and control of the Eν spectrum (20% at 1 GeV → 8% at 3 GeV)

In the first two and a half years
⚫ first end-to-end simulation of the beamline
⚫ feasibility of a purely static focusing system (106 νμ

CC , 104 νe
CC /y/500 t)

⚫ full simulation of e+ reconstruction: single particle level monitoring
⚫ completed the test beams campaign
⚫ strengthened the physics case: → slow extraction + “narrow band off-axis 

technique”

The ENUBET technique is very promising and the results we got so far exceeded our 
expectations

• 2019: freeze light readout technology (shashlik versus “lateral readout” )

• 2019: Further tuning of the beamline design (improve current S/N for e+)

• CDR at the end of the project (2021): physics and costing

• Build the demonstrator prototype of the tagger (2021)
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THANK YOU!


