Fasci monitorati per la determinazione ad alta precisione del flusso di neutrini: il progetto ENUBET

Claudia Brizzolari on behalf of the ENUBET collaboration IFAE 2019, 8-10 April 2019, Napoli

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

Neutrino cross sections and flux uncertainties

- <u>Precise knowledge of $\sigma(v) \rightarrow$ </u> important for future neutrino oscillation experiments (DUNE, HyperK)
- <u>σ(ν_μ)</u>: remarkable improvement in the last 10 years (MiniBooNE, SCIBooNE, T2K, MINERvA, NOvA...), but still no absolute measurements below 7-10%
- $\underline{\sigma(v_e)}$: $\sigma(v_\mu) \leftrightarrow \sigma(v_e)$ delicate at low energies, no intense/pure source of GeV v_e available

Poor knowledge of $\sigma(v_e)$ can spoil the CPV discovery potential and the insight on the underlying physics (standard vs exotic, matter vs antimatter)

Main limiting factor: systematic uncertainties in the initial flux determination

Monitored neutrino beams

A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155

Improvement of one order of magnitude cross-section measurement @GeV scale

Determine absolute v_e flux at neutrino detector with O(1%) precision

C. Brizzolari - ENUBET

The ENUBET beamline

- Proton driver: CERN SPS (400 GeV), Fermilab Main Ring (120 GeV), JPARC (30 GeV)
- Target: 1 m Be, graphite target (FLUKA)
- Focusing:
 - \rightarrow Horn: 2 ms pulse, 180 kA, 10 Hz during the flat top (not shown in figure)
 - → <u>Static focusing system</u>: a quadrupole triplet before the bending magnet
- Transfer line:
 - → <u>Kept short</u> (~20 m) → minimize early K decays and those of off-momentum mesons out of tagger acceptance (untagged neutrino component)
 - → <u>Optics</u>: reference momentum 8.5 GeV/c ± 10% (TRANSPORT)
- **Decay tunnel**: L = 40 m, low power hadron dump at the end
- Proton dump: position and size under optimization

The ENUBET narrow-band beam

The ENUBET beamline: yields

Focusing system	π/pot (10 ⁻³)	K/pot (10 ⁻³)	Extraction length	π/cycle (10 ¹⁰)	K/cycle (10 ¹⁰)	Proposal(b)
<u>Horn</u>	77	7.9	2 ms ^(a)	347	36	x2
<u>Static</u>	19	1.4	2 s	86	6.3	x4

(a) 2 ms at 10 Hz during flat top (2 s) to empty the accelerator after a super-cycle (b) A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155

<u>Horn option</u> \rightarrow more efficient in terms of meson yields,

however

► **<u>Static option</u>** → **yields x4 larger wrt preliminary estimates** from optic optimization

PROS:

- No need for fast-cycling horn
- Strong reduction of the rate in the instrumented decay tunnel
- Monitor muons after the dump at 1% level (\rightarrow flux of ν_{μ} from π) [under evaluation]
- Possibility to associate in time the v interaction at the detector with the observation of the lepton from the parent hadron in the decay tunnel

The Tagger

Tagger prototypes performances

Two readout schemes, tested at CERN:

Compact "shashlik":

- Compact readout based on SiPMs embedded in calorimeter bulk
- PROS: scalable technology
- CONS: SiPMs exposed to large neutron flux (10¹¹ 1MeV-eq n/cm²)

"Lateral":

- Fibers bundled and coupled to SiPMs 40 cm from the bulk of the calorimeter
- PROS: SiPMs less exposed to radiation, more cost-effective
- CONS: less compact
- C. Brizzolari ENUBET

IFAE 2019, 8-10 April 2019

5.726

8.51

0.4016

27.22

16.1 3.402/

33.01

14 4 32,61 / 27

0 210 43.95 ± 1.98 33.68 ± 0.74

10

0.7035/

 3.002 ± 0.006

88 37 + 5 83

.946 ± 0.234

1 027 + 0 005

2 537e+04 ± 1.369e+02

Mean Std De

 χ^2/nd

Consta

Sigm

Entrie Mear

Std De

Consta

Mean

Std De

100 Signal amplitude (mV)

t₀ layer and irradiation studies

y/e⁺ discrimination (photon-veto)

- light collection efficiency \rightarrow >95%
- Time resolution \rightarrow ~400 ps
- First 1mip/2mip separation using photon conversion from π^0 gammas

K_{e3} positron reconstruction

Full GEANT4 simulation of the detector, validated by prototype tests at CERN in 2016-2018. The simulation includes particle propagation and decay, from the transfer line to the detector, hit-level detector response, pile-up effects.

Analysis chain [F. Pupilli et al., POS NEUTEL 2017 (2018) 078]

Event builder: identify the seed of the event and cluster neighboring modules

K_{e3} e⁺ at

- $e/\pi/\mu$ separation: TMVA multivariate analysis based on 6 variables (pattern of the energy deposition in the calorimeter)
- e/y: signal on the tiles of the photon vet

photon veto	ε _{geom}	0.36					
	ε _{sel}	0.55					
	ε _{tot}	0.20					
	Purity	0.26					
	S/N	0.36					
	S/N Φ cut	0.46					
Instrumenting helf of the description							
K _{e3} e ⁺ at single partic	e decay tunne le level with a	ı. a S/N = 0.46					

Conclusions

ENUBET is a narrow-band beam with high precision monitoring of the flux at source (O(1%)) and control of the E_v spectrum (20% at 1 GeV \rightarrow 8% at 3 GeV)

• In 2018, the collaboration has:

- \rightarrow provided the first end-to-end simulation of the beamline
- \rightarrow proved the feasibility of a purely static focusing system
- full simulation of the e⁺ reconstruction: single particle level monitoring S/N ~0.5
- Completed the beam tests campaign before LS2
 - \rightarrow identified best options for instrumentation (shashlik and lateral readout)
- Strengthened the physics case
 - → slow extraction + "narrow band"

Backup

Neutrino events per year at the detector

- Detector mass: 500 t (e.g. Protodune-SP or DP at CERN, ICARUS at Fermilab)
- Baseline (i.e. distance between the detector and the beam dump): 50 m
- 4.5 x 10¹⁹ pot at SPS (0.5/1 y in dedicated/shared mode) or 1.5 x 10²⁰ pot at FNAL

- v_{μ} from K and π are well separated in energy (narrow band)
- v_e and v_μ from K are constrained by the tagger measurement (K_{e3}, mainly K_{µ2})
- v_{μ} from π : μ detectors downstream of the hadron dump (under study)

$\nu_{_{\rm U}}$ CC events at the ENUBET narrow band beam

The neutrino energy is a function of the distance of the neutrino vertex from the axis beam

