

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

Updates on the design of the ENUBET monitored neutrino beam

M. Pari (University and INFN Padova) on behalf of the ENUBET Collaboration

Overview

Accelerator neutrino beams

Particle accelerators are used to generate a controlled neutrino flux. Unlike other neutrino sources:

- → Control of neutrino energy
- ---> Control of source-detector distance

Focusing, charge,

momentum select.

production channel:

Typical neutrino energies of 1-20 GeV Typical source-detector distances of 1-100 km

 \downarrow $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\overline{\nu}_{\mu}$

ICNFP 2021, 31/08/2021, M.Pari

Target

Primarv

protons

Overview

Accelerator neutrino beams: limitations

Overview

The ENUBET project: Enhanced NeUtrino BEams from kaon Tagging

ERC grant 2016-2022

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

Goal:

Design of a monitored neutrino beam Reduction of neutrino flux systematics at the 1% level (additional: energy at 10%) Opening for high precision cross section measurement (1%)

CERN Neutrino Platform experiment

NP06/ENUBET

The ENUBET Collaboration: 60 Physicists, 12 Institutions

Concept of monitored neutrino beam:

- Decay tunnel fully instrumented
- Direct estimation of neutrino flux from production vertex particles
- Bypassing high uncertainty hadroproduction based flux extimation

ICNFP 2021, 31/08/2021, M.Pari

The ENUBET project

The ENUBET project

- Beamline (baseline option): narrow band beam at 8.5 GeV/c secondaries with a 5-10% momentum bite
 - Narrow-Band Off-Axis (NBOA) technique [*]
 - Full energy separation of $\,
 u_{\mu_{\mathbf{K}}} \,$ and $\,
 u_{\mu\pi} \,$ components
 - Direct angle-momentum correlations from two-body decays

Estimation of neutrino energy from impact radius @detector

[*] F. Acerbi et al., CERN-SPSC-2021-013

ICNFP 2021, 31/08/2021, M.Pari

The ENUBET project

The ENUBET beamline

The ENUBET beamline

Results from recent target optimiz. (70 cm graphite rod): new beamline version with x2 Kaon flux wrt previous and x1.5 less e+ bkg

Static advantages: ✓ cost effective ✓ stable operation ✓ low rate But: potential flux increase from magnetic horn also appealing

Proton extraction studies

Dedicated slow extraction studies at CERN-SPS: [*]

horn-compatible slow extraction

- From experimental campaign:
 - → Implemented **new pulsed slow extraction** (burst-mode)
 - → Optimized in operation down to **10 ms pulses @10 Hz**

Input burst length [ms]

20.0

- From simulations:
 - \rightarrow 3-10 ms range of pulse lengths

General extraction method: could be used for other applications (e.g. cosmic veto)

[*] M.Pari, PhD Thesis (2020)
 M.Pari et al., Phys. Rev. Accel. Beams 24, 083501 (2021)
 ICNFP 2021, 31/08/2021, M.Pari

Magnetic horn

Previous proton extraction results open for a horn option:

- Developed simulation model of horn based on GEANT4
- Genetic algorithm used for optimization of horn geometry (> 10 par)
- Hardware constraints enforced
- Developed fully automatic optimization framework
- First candidates available

ICNFP 2021, 31/08/2021, M.Pari

Magnetic horn

First results from standalone (i.e. first quad) horn optimization point to dedicated study on horn-beamline option:

 Development of horn-beamline currently on-going (based on FLUKA, G4, MADX) in parallel to the nominal static option

- → Standalone gain factor ~3 reached with horn optimization, BUT
- Phase space very different: significant design changes required

ICNFP 2021, $31/08/2021,\,{\rm M.Pari}$

Further optimization

Optimization framework developed for the horn upgraded to be fully generic:

- → Application to fine tune beamline collimators for baseline static option
- ----> First results promosing: significant bkg reduction (preliminary & ongoing)

Main bkg particles suppressed

13 of 22

ICNFP 2021, 31/08/2021, M.Pari

Multi-momentum beamline

The current ENUBET beamline generates neutrinos peaked in the DUNE region of interest (~4 GeV):

- Study on development of multi-momentum beamline currently ongoing in collabolation w/ CERN
- Goal is modifiable energy range so to cover full range of interest (HK R.o.I. included)

Decay tunnel instrumentation

Instrumentation of decay tunnel [*]

- After dedicated studies (simulations, prototyping, test beams):
 - → Chosen final design: compact scintillating sampling calorimeters (4.3 radiation lengths) will be used to instrument the ~40m decay tunnel (3 layers). One internal layer of photon veto (scintillator doublet)
 - → Lateral readout to SiPM via bundled WLS fibers (space for shielding: factor 18 dose reduction)
 - → Custom DAQ under development

ICNFP 2021, 31/08/2021, M.Pari

[*] JINST 15(2020)08, P08001; JINST 14 (2019) 02, P02029; NIM A 956(2020)163379 15 of 22

Prototype for exp. validation

A prototype of the tagger is under construction for a final experimental validation at CERN-PS in 2022:

Goal: proof of principle of the ENUBET detector design and concept.

Detector performance & systematics

Waveform simulation and reconstruction

Full simulation chain for waveform generation and analysis is near completion:

- Digitized electrical signal generated from G4 input
- Different peak detection algorithms developed and tested for energy and time reconstruction
- Model also used to set boundaries on tunnel event rate and digitizer sampling time

Event reconstruction

Energy clusters deposited in each sub-module used to reconstruct an event:

→ Two main signals for ENUBET:

muons from Kmu2/3

Basic discrimination idea: use tagger granularity to separate EM showers / Hadronic showers / MIP + photon veto

Event reconstruction

More in detail:

- → 15 parameters neural network trained over pure samples.
- → Reconstruction performance in terms of Signal to Noise ratio (S/N) and efficiency can be computed against input G4 information
- → Main results:

For muons:

S/N: 6.1 Efficiency: 34% (dominated by geometrical)

For **positrons**:

S/N: 2.1 Efficiency: 24% (dominated by geometrical)

Visible Energy (NN)

Conclusions and next steps

- Main design phase of ENUBET terminated:
 - ----> Simulations nearly completed and detector technology frozen
 - ----- Satisfactory performance confirmed from simulations and data taking
 - \longrightarrow A final demostrator of the tagger will be built and tested at the renovated CERN-PS East Area by 2022
- Promising results up to now: project on schedule, prototype assembly started
- The final systematics on the neutrino fluxes (electron and muon) are under evaluation and will be released by 2021
- Studies of non-baseline options proceed as planned, pointing to promising results and potential improvements:
 - further increase nu-flux

 - further studies

Updated fluxes and spectra with these final beamlines by 2022

Thank you for your attention

- Backup —

ICNFP 2021, 31/08/2021, M.Pari

ENUBET: reach

The ENUBET beamline

Baseline option: fully static beamline

Effect of horn on beam

Phase space after target

Phase space after horn

ICNFP 2021, 31/08/2021, M.Pari

26 of 22

