

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

Development and optimization of the ENUBET beamline

M. Pari (University and INFN Padova) on behalf of the ENUBET Collaboration

- Beamline (baseline option): narrow band beam at 8.5 GeV/c secondaries with a 5-10% momentum bite
 - Narrow-Band Off-Axis (NBOA) technique [*]
 - Full energy separation of $\,
 u_{\mu_{\mathbf{K}}} \,$ and $\,
 u_{\mu\pi} \,$ components
 - Direct angle-momentum correlations from two-body decays

Estimation of neutrino energy from impact radius @detector

NuFact 2021, 09/09/2021, M.Pari

3 of 19

In this talk: focus on beamline, new and ongoing developments

- Baseline design: overview and results
- Recent results on target optimization
- Studies on proton extraction
- Magnetic horn and optimization
- Further beamline optimization
- Multi momentum beamline

The ENUBET beamline

Baseline option: fully static beamline

- \longrightarrow Target and hadro-production: FLUKA
- → Transfer line:
 - optics optimization: TRANSPORT tracking & background: G4Beamline/G4 doses & neutron shielding: FLUKA systematics: GEANT4 [in progress]

 \longrightarrow Neutron shielding added at hadron dump \checkmark

→ Proton dump will require further eng. studies

Static = slow extraction (SX) of a few seconds required by pile-up constraints (differently from majority of nu-beams)

The CERN-SPS is a good candidate: for now SX of ~2 s of 400 GeV proton is assumed.

Other possible candidates are MI (FermiLab, 120GeV) and MR (J-PARC, 30 GeV).

Beamline: the baseline design

Baseline design: irradiation

- Irradiation studies of the beamline performed using FLUKA: both charged part. & neutrons
- Hottest point: first collimator & quadrupole is 100-300 kGy
- New layer of borated-PE shielding for SiPMs & electronics: factor 18 dose reduction wrt previous case

Baseline design: targets

al [%]

Recent target optimization based on FLUKA & G4beamline model led to successful results and two candidates:

- ----> Graphite rod 70 cm-long by 6 cm-diameter
 - Well studied target material and feasible implementation
 - Chosen as target for the baseline design
- → INCONEL rod 50 cm-long by 6 cm-diameter
 - A relatively new solution: also nuSTORM is considering it
 - Observed promising reduction in positrons (& distr.) for a similar number of kaons wrt graphite.
 - Considered for alternative beamline designs: work ongoing

Baseline design: targets

105

102

107

102

101

n 'nn

Recent target optimization based on FLUKA & G4beamline model led to successful results and two candidates:

- ----> Graphite rod 70 cm-long by 6 cm-diameter
 - Well studied target material and feasible implementation
 - Chosen as target for the baseline design
- → INCONEL rod 50 cm-long by 6 cm-diameter
 - A relatively new solution: also nuSTORM is considering it
 - Observed promising reduction in positrons (& distr.) for a similar number of kaons wrt graphite.
 - Considered for alternative beamline designs: work ongoing

Target: Graphite, Lg = 0.3m. Primary: 400 GeV/c. Direction: 0°. Ap/p: +10%, AA = 20 mrad

Baseline design: results & considerations

Results using new optimized graphite target: new baseline design with x2 Kaon flux wrt previous and x1.5 less e+ bkg

Proton extraction studies

Dedicated slow extraction studies at CERN-SPS: [*]

horn-compatible slow extraction

- From experimental campaign:
 - → Implemented **new pulsed slow extraction** (burst-mode)
 - → Optimized in operation down to **10 ms pulses @10 Hz**

- From simulations:
 - \rightarrow 3-10 ms range of pulse lengths

General extraction method: could be used for other applications (e.g. cosmic veto)

 [*] M.Pari, PhD Thesis (2020) M.Pari et al., Phys. Rev. Accel. Beams 24, 083501 (2021)
 NuFact 2021, 09/09/2021, M.Pari

Proton extraction studies

Dedicated slow extraction studies at CERN-SPS: [*]

horn-compatible slow extraction

- From experimental campaign:
 - → Implemented **new pulsed slow extraction** (burst-mode)
 - → Optimized in operation down to **10 ms pulses @10 Hz**

→ 3-10 ms range of pulse lengths

General extraction method: could be used for other applications (e.g. cosmic veto)

[*] M.Pari, PhD Thesis (2020)
 M.Pari et al., Phys. Rev. Accel. Beams 24, 083501 (2021)
 NuFact 2021, 09/09/2021, M.Pari

Magnetic horn

Previous proton extraction results open for a horn option:

- Developed simulation model of horn based on GEANT4
- Different designs available: MiniBooNE, double-parabolic, conic
- Genetic algorithm implemented for optimization of horn geometry (> 10 par)

Convergence ~O(100) iterations

- Basic hardware constraints enforced
- Developed fully automatic clusterbased optimization framework
- First candidates available

Magnetic horn

Results from standalone (i.e. first quad) horn optimizations show consinstent flux gain of factor ~3 (@momentum bite):

- Solution based on INCONEL target seems promising: short external target & good horn parameters.
- Gain comes from squeezed angles due to horn focusing power.

12 of 19

Magnetic horn

But:

- This comes at expenses of increased beam dimension and very different initial phase space
- Current version of baseline beamline not optimized for this type of beam
- Started development of dedicated horn-beamline design: significant changes required wrt static design

1.25

1.00

Magnetic horn: roadmap

New developed MADX framework for design and optimization of new beamline (goal: faster optics opt.)

- Particle distributions and gains will be assessed w/ G4 and compared w/ baseline design
- Goal: prove a substantial flux increase maintaining the narrow-band beam & bkg requirements of ENUBET

Further optimization

From the previous horn study: optimization framework upgraded to be fully generic

- → Can be applied to any optimizable multi-dim. beamline design issue
- ----> First application: fine tune beamline collimators for baseline static option
- -> First results promising: significant bkg reduction (preliminary & ongoing)

Neutrino flux and energy

The current ENUBET beamline generates neutrinos peaked in the DUNE region of interest (~4 GeV):

Would be useful being able to cover also different neutrino energy ranges

Multi-momentum beamline

To this end:

- Study on development of multi-momentum beamline currently ongoing in collaboration w/ CERN
- → Goal is modifiable energy range so to cover full range of interest (HK R.o.I. included)

Optics design: TRANSPORT

Kaon fluxes (G4beamline, preliminary)

Conclusions and next steps

- Main design phase of ENUBET static beamline terminated:

 - ---- Satisfactory performance reached
- Promising results up to now: **project on schedule**
- The final systematics on the neutrino fluxes (electron and muon) are under evaluation and will be released by 2021 (see talk from A.Branca)
- Studies of non-baseline options proceed as planned, pointing to promising results and potential improvements:
 - ----> Investigation of use of SC dipole after results from doses estimation are ongoing
 - -----> Successful development of pulsed slow extraction opened for horn design option
 - \longrightarrow Genetic opt. of horn pointed to ~3 flux gain: dedicated beamline underway
 - \longrightarrow Application of genetic opt. on the static beamline for S/N increase
 - ----> Studies on a multi-momentum beamline for different nu-energy ongoing

Updated fluxes and spectra with these final beamlines by 2022

Thank you for your attention

- Backup —

NuFact 2021, 09/09/2021, M.Pari

20 of 19

ENUBET: reach

The ENUBET beamline

Baseline option: fully static beamline

Effect of horn on beam

Phase space after target

Event reconstruction

Energy clusters deposited in each sub-module used to reconstruct an event:

→ Two main signals for ENUBET:

muons from Kmu2/3

Basic discrimination idea: use tagger granularity to separate EM showers / Hadronic showers / MIP + photon veto

