

Enhanced NeUtrino BEams from kaon Tagging

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (G.A. n. 681647)

The ENUBET project: a monitored neutrino beam

• ENUBET is a **ERC Consolidator Grant.** Since April 2019, it's also a **CERN Neutrino Platform experiment: NP06/ENUBET** and part of **Physics Beyond Colliders.** Go visit our website! https://www.pd.infn.it/enubet

• The ENUBET Collaboration: 60 physicists, 13 institutions

 The goal: Demonstrate the technical feasibility and physics performance of a neutrino beam where lepton production at large angle is monitored at single particle level → MONITORED Neutrino Beams

The Project

- Why?
- Systematics for cross section measurements:

The uncertainty on the neutrino flux is currently the main source

- + Reconstruction of the neutrino energy, biased by the inaccurate reconstruction of the final state particles.
- Need high-precision determination of V_e and V_{μ} x-sec at the energy of interest for DUNE and HyperK to reduce substantially the systematics of long-baseline experiments
 - \rightarrow Increase the sensitivity to oscillation parameters, in particular, the CP violating phase δ
- How? Conventional facility where we monitor the decays in which neutrinos are produced event-by-event
 - → "By-pass" the uncertainties from hadro-production, beamline effciency, POT counting
 - \rightarrow Reduce the uncertainty on the flux of ν_e , and, possibly of ν_u , below 1%

Transfer Line

ENUBET is a very narrow band beam (5-10% momentum bite)

dump

 \rightarrow Strong correlation between the energy of each v and its interaction vertex due to kinematics.

"Narrow band off axis technique" method → Reconstruction of the energy in the neutrino detector without relying on final state particles \rightarrow

with a range meter from

 $\pi_{\mu\nu} o {f flux} \ {f v}$

Neutrino energy known at 10-20% level

Ideal tool to study neutrino interactions in nuclei

 π^-/K^-

 $V_{\rm o}$ flux prediction = e^+ counting

The Beamline & Accelerator Studies

- Conventional beamline where the pions and kaons are produced by protons on a fixed target.
 Mean energy of the hadrons selected = 8.5 GeV
 Selected particles are transported to the decay tunnel that is located off the axis of the proton beam
- 40 m long decay tunnel instrumented with calorimeters along its wall to monitor the leptons \rightarrow Ke3 decays become the only source of v_e : $\sim 97\%$ of the overall v_e flux. Ke3 positrons emitted at large angles \rightarrow hit the walls of the instrumented tunnel
- 2 possible focusing:
 - a purely static system = quadrupoles are placed directly downstream the ENUBET target
 → with a proton "slow extraction" scheme
 - a horn-based beamline = a focusing magnetic horn between the target and the transferline
 → needs a proton "fast extraction" method

Pro&cons for the 2 designs → ENUBET is pursuing both options

The Beamline & Accelerator Studies

Static extraction of protons "Slow Extraction"

full intensity extracted continuously in few seconds

d continuously in few seconds

horn pulsed at 2-10ms in the flat top "Fast Extraction"

all protons extracted in O(1-10µs) by kicker magnet

Need sustainable level for particle rate

ENUBET

- ✓ No need for fast-cycling horn
- Strong rate reduction in the instrumented decay tunnel (no pile-up effects)
- ✓ Possibility to monitor the muon rate after the dump at % level (flux of V_u from pion decay)
- ✓ Pave the way to a "tagged neutrino beam"
- x Needs more POT to reach wanted v_e statistics

- More π & K in the wanted P range focused
 - → Higher yields @ decay tunnel
 - \rightarrow More $\nu_{\rm e}/POT$
- x Pile-up problems in the decay tunnel
- Novel pulsed-slow extraction method developed in collaboration with CERN (BE-OP-SPS & TE-ABT-BTP)
 - "BURST-MODE SLOW EXTRACTION"

- Proton drivers: CERN SPS (400 GeV), Fermilab Main Ring (120 GeV), JPARC (30 GeV)
- Transfer line optimization:
 - Optics optimized with TRANSPORT to a 10% momentum bite centered at 8.5 GeV
 - As short as possible to minimize early K-decays
 - Small beam size: non-decaying particles must exit the decay tunnel without hitting the tunnel walls
- Particle transport and interaction: full simulation with G4Beamline

Rates at Tunnel Entrance	$\pi^{+}[10^{-3}]/POT$ 8.5 GeV ± 5%	K ⁺ [10 ⁻³]/POT 8.5 GeV ± 5%
400 GeV POT	4.2	0.4

At nominal SPS 4.5 10¹⁹ POT/year 10⁴ V_eCC @ 500ton v-detector located 50m from the tunnel in about 2 years

73.5% of the total Ve flux generated in the tunnel → more than 80% above 1 GeV

- Below 1 GeV main component is produced in the proton-dump region → further improve the separation against it by optimizing the proton dump position.
- 12% given by the straight section in front of the tagger
 - \rightarrow corrected for by relying on the simulation

The Beamline & Accelerator Studies – The Horn-based beamline

10ms pulses repeated at 10 Hz at the SPS Multiple ms-long pulses slowextracted during the flat-top at a fixed repetition rate

Burst mode slow extraction achieved at the SPS. Iterative feedback tuning allowed to reach ~10 ms pulses without introducing losses at septa

Horn optimization

- Genetic Algorithm
- External constraints to fulfill hardware requirements
- **FOM** = Number of K⁺ in ENUBET mom. bite focused at first quadrupole after the horn (distance+acceptance), beam-line independent
- For different geometries&constraints reached FOM factor 3 higher than static case
- Next: further studies on a dedicated beamline specific to the horn to take advantage of the flux increase

The Detector

A Lateral readout Compact Module LCM

Calorimeter with $e/\pi/\mu$ separation capabilities:

- Sandwich of 5 steel tiles (3x3x1.5 cm²) interleaved with 5 plastic scintillator tiles (3x3x0.5 cm²): LCM
 - longitudinal segmentation
 - SiPM active area: 4x4mm², Cell size: 40 μm
- three radial layers of LCM
- Each LCM has 10 WLS (1mm) fibers coupled with SiPM

Photon-Veto allows Π^0 rejection and timing:

- plastic scintillator tiles arranged in doublets forming inner rings (3x3x0.5 cm² mounted below the LCM)
- time resolution of ~400 ps

Basic unit
Later Compact Module

Decay Tunnel

Exploit event topology for PID

The Physics Performance – The Detector Simulation & Lepton ID

- Full GEANT4 simulation reproducing the detectors in the decay tunnel
- The PID is performed by the energy pattern in the modules and by the photon veto.

positrons from $K_{e3} \rightarrow \nu$ **muons** from $K_{\mu 2}$ and $K_{\mu 3}^{e} \rightarrow \nu_{\mu}$ **muons** from π decay \rightarrow low-E ν_{μ}

Analysis Chain - Ke3 positron monitoring

1) Event builder: start from event seed and cluster energy deposits compatible

in space and time with same decay

 e/μ/π/γ separation: Event selection based on 19 variables employed by a TMVA Neural Network

<u>Analysis Performance - Ke3</u>

Analysis Performance – K→µ monitoring

S/N = 6
Efficiency = 34%
(~half of eff. loss is geometrical)

The Static Transferline – v

Narrow-band Off-axis Technique

F. Acerbi et al., CERN-SPSC-2018-034

Narrow momentum width of the beam (O(5-10%)) + finite transverse dimension of the neutrino detector

Strong correlation between E, in the detector and the radial distance (R) of the interaction vertex from the beam axis

E_{ν} is provided on event-by-event basis without relying on final state particles in ν_{μ} CC

By selecting interactions in radial windows of ± 10 cm we collect respective samples of ν_{μ} CC events

25 2.5 2.5 10 10 11 1

- •Loose energy cut enough to separate π/K component
- •Width of pion peak at different R → estimator of the precision on Ev: 8% to 25% at DUNE energy

G.Brunetti - ENUBET

The Detector – Prototype Test Results & The Demonstrator

Prototype of 84 LCM tested

in 2018 @ CERN PS-T9 F. Acerbi et al., JINST 15 P08001 (2020)

- Containmnent of em showers up to 5 GeV
- Energy Resolution $\sigma_E/E = 17\%$ @ 1 GeV
- **Photon-veto** (t₀-layer) 1-mip/2-mip separation:

1-mip signal with ε =87%

Background rej. ε=89% (2-mip like), 95% Purity

The Demonstrator

- ENUBET is building a detector prototype to demonstrate performance, scalability and cost-effectiveness
- New ligth readout scheme: from lateral to frontal light collection. Safer for injection molding. More uniform and efficient
- To be exposed at CERN in 2022
- 1.65m long, covers 90° in azimuth
- 75 layers of iron + 75 layers of scintillators = $12 \times 3 \text{ LCM}$
- Will **instrument central 45**°, rest kept for mechanical considerations
- Modular design \rightarrow can be extended to a full 2π object by joining 4 of these modules

Future Developments & Possibilities

Tagged Neutrino Beam

the neutrino seen at the neutrino detector is associated in time with the observation of the lepton from the parent hadron in the decay tunnel:

- Detector system with time resolution at $O(\sim 100 \text{ ps})$ level that would improve the performance of the standard photon veto system of ENUBET \rightarrow R&D activities are ongoing to identify the proper technology (NUTECH project)
- Slow proton exctraction scheme + Static Transferline

Associating a single neutrino interaction to a tagged e⁺ through time coincidences would be a major breakthrough

→ Purity of selected sample of neutrino interactions at unprecedented level

Conclusions

- ENUBET is aiming at the realization of the first monitored neutrino beam → measurement of neutrino cross-section and flavor composition at 1% precision level + energy of the neutrino at 10% precision level
- A Conventional narrow-band neutrino beam
 - <u>Static transferline:</u>
 - Very appealing <u>Horn-based</u> option

- Construction of the demonstrator and electronics in progress → test at PS East Hall in 2022
- ENUBET is on schedule and in the last phase of the project → Conceptual Design Report at the end of the project (2022): physics and costing
- Also studying: Multi momentum beamline to achieve a design fexible enough to explore also Hyper-K ROI at lower momenta & Superconducting 2nd dipole to increase total bending angle
- *ENUBET/nuSTORM Workshop on Thursday!* → Synergy with NuSTORM in the framework of PBC

Back-ups

07/09/2021 G.Brunetti - ENUBET 17

The Target

Selected after a <u>dedicated optimization study with different materials</u>:

Graphite, 70 cm long with a radius of 3 cm

Momenta tested: FLUKA simulation for POT @ 400, 150, 70, and 50 GeV/c → The nominal SPS energy (400 GeV/c) is a good choice for ENUBET, especially for cross section studies in the region of interest for DUNE

The Hadron Dump & **The Proton Dump**

Similar structure, 3 cylindrical layers

- → H-Dump design optimized to reduce the backscattering
- In particular, last meters of the tunnel where the **neutron fluence** is more significant
- → P-Dump final position of will be optimized to reduce the number of neutrinos in the Neutrino Detector

The Target

→ Selected after a <u>dedicated optimization study</u>:

Graphite, 70 cm long with a radius of 3 cm

- **Geometry** determines the reinteraction probability and absorption of the secondary particles
- Mechanical constraints and cooling requirements

- Target tested: graphite, beryllium, inconel + various high-Z materials (gold and tungsten). Each target prototype is a cylinder with variable radii between 10 and 30 mm and lengths extending from 5 to 140 cm
- Momenta tested: FLUKA simulation for POT @ 400, 150, 70, and 50 GeV/c → The nominal SPS energy (400 GeV/c) is a good choice for ENUBET, especially for cross section studies in the region of interest for DUNE

The Hadron Dump

graphite core (50 cm diameter), inside a layer of Iron (1 m diameter), covered by borated concrete (4 m diameter) + 1 m of borated concrete is placed in front of the hadron dump leaving the opening for the beam

\rightarrow design optimized to reduce the backscattering

Reduction by a significant amount of the flux all along the tagger

In particular, last meters of the tunnel where the **neutron fluence** is more significant \rightarrow Ratio w.r.t "standard" dump ~ 0.2

The Proton Dump

Similar structure, 3 cylindrical layers:

- 3 m long graphite core, surrounded by aluminum, covered by iron
- \rightarrow final position of the proton dump will be optimized to reduce the number of neutrinos in the Far Detector

The Detector – Prototype Test Results

Prototype of 84 LCM tested in 2018 @ CERN PS-T9

- •7 planes on a 3x4 matrix \rightarrow 30 X_0 , 3.15 λ_0 \rightarrow Containment of em showers up to 5 GeV
- •Beams tested: e, μ , π , P in [1-5] GeV
- •Angles tested w.r.t beam direction (mimic K_{e3} e⁺): 0, 50, 100, 200 mrad

Reconstructed Energy: Data/ MC comparison at 100mrad

Energy Resolution at 0 mrad

Photon Veto (t₀ layer)

- •1-mip/2-mip separation: **1-mip signal with ε=87%** Background rej. ε=89% (2-mip like), 95% Purity
- •Time resolution ~400 ps

Results published: F. Acerbi et al., JINST 15 P08001 (2020)

The Detector – The Demonstrator

Several activities currently on-going towards the test of the demonstrator

- Large scale production of the scintillators (UNIPLAST Moscow & INR). Total nb of scintillator tiles for the demonstrator will be ~10000
- Improved light readout scheme completely validated by GEANT4 optical simulation → distance between fibers optimized to achieve best possible light collection & uniformity
- Efficiency map measurement of tiles with similar final shape at INFN-Bologna with a cosmic ray tracer

• **ENUBINO**: pre-demonstrator small prototype = 3 LCMs is being assembled and will be soon characterized with cosmics at INFN-LNL

WLS routing and SiPM matching scheme

The Physics Performance – The Detector Simulation & Lepton ID

Analysis Chain - Ku2 & Ku3 muon monitoring

- 1) Event builder: Space and time clustering of energy deposits compatible with a track of a muon
- 2)S(µ-like)/B separation: Event selection based on a TMVA Neural Network with 13 vars Main background from halo muons is identified and can be used as control sample

<u>πμ2 monitoring to constrain low-energy ν</u>

- \checkmark Monitor associated μ emitted at low angle that go through the tunnel and the hadron dump.
- ✓ Correlation between number of traversed stations (muon energy from range-out) and neutrino energy; difference in distribution to disentangle signal from halo- muons.

G.Brunetti - ENUBET

23

The Physics Performance – The Systematics

• Model to describe the measured observables built from distributions predicted by the simulation. The systematic effects are introduced as nuisance parameters in the model

The model PDF: $PDF = N_S(\vec{\alpha}, \vec{\beta}) \cdot S(\vec{\alpha}, \vec{\beta}) + N_B(\vec{\alpha}, \vec{\beta}) \cdot B(\vec{\alpha}, \vec{\beta})$ Sets: $\alpha = \text{hadro-production nuisances}$ $\beta = \text{beamline related nuisances}$ Signal and Background Shapes Signal and Background Nb. Of Events

•Toy Monte Carlo to study level of Improvement in the systematics ↔ Gain in neutrino flux precision Multi-verse Method

How does the obsevable change with hadroproduction variations? \rightarrow uncertainty envelope created Ex: **Z position** = impact point along the tagger, for μ from K decays

The Physics Performance – The Systematics

• A software framework written within ROOFIT to constrain the neutrino flux from the

reconstructed leptons

Maximization of an extended likelihood of the observed data

✓ **Machinery validated** using the impact point along the tagger of muons from kaon decays

Constraint on the Neutrino Flux: Relative error for the neutrino spectrum ~1.8%, with initial systematic uncertainty of ~15%

- Next Step: From a toy to the real ENUBET case using full simulation
 - Use real hadroproduction data (400 GeV POT, NA56/SPY) and related syst. uncertainties to correct MC
 - Use facility parameters to assess impact 07/09/2021

Future Developments & Possibilities

• Multi momentum beamline: to achieve a design flexible enough to explore also Hyper-K ROI at

lower momenta → currently working on a beamline design based on existing CERN magnets.

overall max angular acceptance ±20mrad in both planes

- → Will be finalized with MADX/PTC-TRACK higher order effects validation and FLUKA background reduction studies
- Super conducting dipole: could help in better separating the v_e component from tagger at the far detector + better momentum separation w.r.t higher and lower meson momenta \rightarrow cleaner spectrum at tagger entrance
- → The static transferline is also fully implemented in FLUKA to estimate ionizing doses and neutron fluences

Doses

In Gy for 1e20 POT

Hot side ~ 70 kGy with 10^{20} pot Inside Iron ~10 kGy with 10^{20} pot

Hottest region (conservative value): 70 kGy = 70 kJ/kg per 1e20 POT

Iron: 7800 kg/m³ \rightarrow 1 kg = 1/7800 m³ = 128 cm³

 $70 \text{ kGy} = 70 \text{ kJ/kg} = 70 \text{ kJ/}128 \text{ cm}^3 = 0.55 \text{ kJ/cm}^3$

1e20 POT = 1e7 spill (each ~1e13 POT/spill)

per spill, over 2 s: 0.55 kJ/cm³/1e7 = 0.055 mJ/cm³

→ 0.027 mW/cm³ during a 2s slow extraction

It looks safe: from LHC studies for a 2s long loss the critical power is between 40 and 150 mW/cm³ (7.0 and 3.5 TeV)

Future Developments & Possibilities

Synergy with NuSTORM

- NuSTORM: a step towards the muon collider
- Experimental demonstration of ionization cooling: Proof-of-principle for stored muons for particle physics.
- Feasibility of executing nuSTORM at CERN through Physics Beyond Colliders
- Main Synergy with ENUBET:
- Target Facility
- 1st stage of meson focusing
- proton dump
- → ENUBET specific: opportunity for a tagged neutrino beam
- Emphasis on the implementation at CERN and possible use of existing facilities/detector
- The 2 collaborations are currently evaluating the synergy at facility-level
- ENUBET/nuSTORM Workshop on Thursday!

	Decay region	Hadron dump	Proton extraction	Target, sec. transfer line, p-dump	Neutrino detector
ENUBET	~40 m. Instrumented.	Yes. Dumps muons in addition preventing a (small) v_e pollution to K_{e3} - v_e	Slow, 400 GeV (flexible)	Yes, similar	~100 m (some flexibility)
nuSTORM	Replaced by straight section of the ring (180 m)	No. Muons are kept: the most interesting flux parents.	Fast, 100 GeV	Yes, similar	> 300 m from target (ring straight section)

