

lours, France, 3-7 July 2017 Shashlik calorimeter with embedded SiPMs for the ENUBET project

NDIP 2017

Valerio Mascagna on behalf of the ENUBET collaboration

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

8th International Conference on

ew Developments in Photodetection

- The ENUBET project
- Status of the positron tagger (shashlik calorimeter)
- Overview of the testbeam results
- Conclusions and outlooks

Enhanced NeUtrino BEams from kaon Tagging

Project approved by the European Research Council (ERC) **5 years** (06/2016 – 06/2021) overall budget: 2 MEUR

ERC-Consolidator Grant-2015, no 681647 (PE2) P.I.: **A. Longhin** Host Institution: **INFN**

Expression of Interest (CERN-SPSC, Oct. 2016) cern-spsc-2016-036; spsc-EOI-014

41 physicists, 10 institutions: CERN, IN2P3 (Strasbourg), INFN (Bari, Bologna, Insubria, Milano-Bicocca, Napoli, Padova, Roma-I)

In the **CERN Neutrino Platform** (NP03, PLAFOND)

http://enubet.pd.infn.it

Expression of Interest

Enabling precise measurements of flux in accelerator neutrino beams: the ENUBET project

A. Berra^{a,b}, M. Bonesini^b, C. Brizzolari^{a,b}, M. Calviani^m, M.G. Catanesi^l,
S. Cecchini^c, F. Cindolo^c, G. Collazuol^{k,j}, E. Conti^j, F. Dal Corso^j, G. De Rosa^{p,q},
A. Gola^o, R.A. Intonti^l, C. Jollet^d, M. Laveder^{k,j}, A. Longhin^{j(*)}, P.F. Loverre^{n,f},
L. Ludovici^f, L. Magaletti^l, G. Mandrioli^c, A. Margotti^c, N. Mauri^c, A. Meregaglia^d,
M. Mezzetto^j, M. Nessi^m, A. Paoloni^e, L. Pasqualini^{c,g}, G. Paternoster^o, L. Patrizii^c,
C. Piemonte^o, M. Pozzato^c, M. Prest^{a,b}, F. Pupilli^e, E. Radicioni^l, C. Riccio^{p,q},
A.C. Ruggeri^p, G. Sirri^c, F. Terranova^{b,h}, E. Vallazzaⁱ, L. Votano^e, E. Wildner^m

Last 10 years: knowledge of $\sigma(v_{\mu})$ improved enormously MiniBooNE, SCIBooNE, T2K, MINERvA, NOvA ...

Nevertheless, the flux systematics **"wall"** is still there being typically the **dominant uncertainty** for cross section measurements

No absolute measurements below ~7-10%

In addition, for **σ(v_e)** we use the beam contamination (no intense/pure sources of GeV v_e): data still sparse Gargamelle, T2K, NOvA, MINERvA

Poor knowledge of $\sigma(v_{a})$ can spoil :

- the CPV discovery potential
- the insight on the underlying physics (standard vs exotic)

Monitored (e)neutrino beams

The "holy grail" of neutrino physicists:

The possibility of using tagged-neutrino beams in high-energy experiments must have occurred to many people. In tagged-neutrino experiments it should be required that the observed event due to the interaction of the neutrino in the neutrino detector would properly coincide in time with the act of neutrino creation $(\pi \rightarrow \mu\nu, K \rightarrow \mu\nu, B. Pontecorvo, Lett. Nuovo Cimento, 25 (1979) 257$

Based on **conventional technologies**, aiming for a **1% precision** on the **v flux**

Monitor (~ inclusively) the decays in which v are produced → "by-pass" of the hadro-production, beam-line efficiency uncertainties, ...

The ENUBET monitored beam

~500 t detector at 100 m (Ar:6x6x10 m3)

 $p_{K,n} = 8.55 \pm 20\% \text{ GeV/c}$ θ < 3 mrad (over 10x10cm²) tagger: L = 50 m, r = 40 cm

Positron tagger: real-time, "inclusive" monitoring of K decay products

 π^{\pm} rejection \rightarrow **CALORIMETER** ("shashlik") compact, cost effective, integrated light readout

Plastic scintillator (or large area APDs , Cherenkov radiator + LAPPD)

The TAGGER – shashlik calorimeter

56 "UCM" (Ultra Compact Modules)

Dimensions: $3 \text{ m x } \pi$ #SiPMs: 34000 #Channels: 3800 Weight: ~ 5 t

fib length: ~10000 m Readout: custom waveform digitizers 2 ns granularity over ~10 ms

The TAGGER – shashlik calorimeter

Ultra Compact Module

Dimensions 3x3x10 cm35 x (ABSORBER + SCINTI) $\rightarrow \sim 4 X_{0}$

Fe-15mm + EJ200 TiO2 painting WLS: Kuraray Y11 double clad, 1mm diameter

9 SiPMs summed (AC coupled, 47 pF)

SiPMs: FBK HD-RGB, 1mm²

Need to be: Fast (10ns ← avoid pileup) Rad.hard (10¹² n/cm²)

F. Acerbi (FBK) SPW2015

Cell size:

Investigating
 tagger prototype

The TAGGER – prototype validation

Test beam at CERN-PS T9 Nov. 2016

1-5 GeV/c e^{-}, μ^{-}, π^{-} PS extracted beam

Test **data/MC agreement** and **e/π separation** at grazing incidence (~ 30 X₀, orientable cradle)

56 (e.m.) + 18 (had.) UCM, 666 SiPM

The TAGGER – prototype validation

The TAGGER – scinti/absorber variants

Test beam at CERN-PS T9 May 2017

Polisyloxane scintillators (liquid) + powder absorbers (no drilling!)

15mm Polisyloxane scintillator EJ200 peak 5.5 4.5 3.5 2.5 **MIP** peak x (cm) efficiency ~ 0.980 1000 1500 2000 500 PH > 240 ADC | time in (170,190) PH (ADC) 15 Polisyloxane scintillator + 5mm Pb-powder

High efficiency, uniformity, light yeld >~ typical organic scinti (with triple thickness wrt EJ200) → promising results

The TAGGER – tentative t0-layer

Test beam at CERN-PS T9 May 2017

Scintillator Code	Scintillator Type	Thickness (mm)	Wrapping
SC1	EJ200	5.0	Tyvek
SC3	PS (*)	5.0	Tyvek
SC4	PS (*)	8.0	Tyvek
SC5	EJ200	5.0	EJ-510 paint (TiO ₂)

Uniformity and **efficiency** is good (reduction only on the fiber groove);

Tyvek seems **better** then paint (comparing 5 mm tile)

Noise issues (← 500MHz/1GHz amplif!)

4 x detectors :

tile 29.5x29.5 mm², different thickness, type and wrapping

fiber Y11, single cladding, 2.2 mm diameter, ~ 40 cm, glued in a groove along the diagonal, mirrored with mylar

Selection: Pulse Height > 40 ADC counts

NEUTRON IRRADIATION - INFN-LNL

Neutron and ionizing doses have been studied for a tagger radius of **40**, **80** and **100 cm** with **FLUKA** and cross-checked with **GEANT4**.

Choosing **100 cm** allows ~ **10¹² 1MeV-eq/cm² n** and **~0.25 kGy** in the innermost layers in the detector Lifetime (~10y)

NEUTRON IRRADIATION - INFN-LNL

SiPMs irradiated up to 1MeV-eq n/cm² :

- FBK HD-RGB 1x1mm² 12µm cell size
- FBK HD-RGB 1x1mm² 15µm cell size
- FBK HD-RGB 1x1mm² 20µm cell size
- SensL J-series 3mm² 20µm cell size
- PCB with 9 SiPMs (UCM), all cell sizes
- PCB with 56 SiPMs (tagger prototype layer)

Monitoring of:

- I-V curves (live)
- Waveforms
- Gain (p.e. spectrum)

Analysis is ongoing (sorry! ended last week...)

Post irradiation: (No annealing)

→ CERN **test beam incoming** (end of July)

NEUTRON IRRADIATION – data

VERY PRELIMINARY (analysis and fluence calc.+simul. in progress) – data taking ended last week!

CONCLUSIONS & OUTLOOKS

- Neutrino flux error limit could be reduced by 1 order of magnitude exploting K⁺ → π⁰ e⁺ v
- In the **next 4 years ENUBET** will investigate this approach and its application to a **new generation of cross section experiments**
- In the 1st year of the project a rich simulation (beam & tagger) and prototyping program (tagger) is giving very promising results
- Challenging open items ahead, lots of ongoing R&D activities (2017/2018):

test of irradiated SiPMs achieve recovery time of ~10ns (to cope with pile up, now 50ns) test of custom digitizers electronics photon veto prototypes with plastic scintillators Scalable/reproducible technological solutions like molded scintillators, water-jet holes machining for absorbers, polysiloxane scintillators, powder absorbers

CONCLUSIONS & OUTLOOKS

THANK YOU!

ENUBET info/wiki

http://enubet.pd.infn.it

- A. Longhin, L. Ludovici, F. Terranova, Eur. Phys. J. C75 (2015) 155
- A. Berra et al., NIM A824 (2016) 693
- A. Berra et al., NIM A830 (2016) 345
- CERN-SPSC-2016-036; SPSC-EOI-014

Work Packages (WP)

PI A. Longhin 🍏

L. Ludovici

- WP1 Conceptual design of the beamline see below
- WP2 Design and prototyping of the positron taggers WP coordinator: M. Pozzato
- WP3 SiPM and front-end electronics for the instrumented decay tunnel WP coordinator: V. Mascagna
- WP4 Design and prototyping of the photon veto (e/γ separation) WP coordinator: G. Sirri
- WP5 Simulation and assessment of the systematics WP coordinator: A. Meregaglia

