The **ENUBET ERC** project aims to develop an instrumented decay tunnel for future neutrino beams. Elisabetta Parozzi, on behalf of the ENUBET collaboration, presents the project.

Physics Programme

Improvement by one order of magnitude the measurement of ν_e and ν_μ cross sections

Highly beneficial for tackling the main open neutrino-related issues: lepton CP violation,

- Mass hierarchy: δ_{23} octant.

First step towards a time tagged neutrino beam: direct production/detection correlation.

Ultra-Compact Calorimeter Prototypes

Shashlik with integrated readout

- Basic Shashlik Calorimeter: stack of alternating absorber and scintillator materials, pierced by a wavelength shifting fiber (WLS) perpendicular to the absorber and scintillator tiles.

- Ultra-compact Shashlik Calorimeter: basic shashlik prototype where each WLS fiber is readout by one SiPM.

Polysiloxane shashlik calorimeters

- First use in HEP, elastomeric material with interesting properties:
 - Superior radiation hardness: transparent after 10 kGy dose exposure.
 - Easier fabrication process: initial liquid form poured at 60°C.
 - No drilling of the scintillator.
 - Good optical contact with fibers.

- Prototype tested at CERN (PS-T9)
 - 12 UCMS: 3 (beam direction) x 2 x 2
 - Active layer 3 times thicker: 15 mm compensate 30% lower light yield w.r.t. EJ200

- Energy resolution: 17%/√E (comparable with plastic scintillator based prototype)

Lateral scintillation light readout calorimeter

- Light collected from scintillator sides and bundled to a single SiPM reading 30 fibers/3 scintillators.

- SiPM are not exposed in the hadronic shower, thus less compact design.

Other characteristics:

- Reduced neutron damage:

- Better accessibility:

- Safer WLS-SiPM coupling

- Uniformity response, π/ν separation: in progress.

Test of SiPM radiation-hardness

In ENUBET, the use of compact calorimetric modules is a very effective solution but results into exposing the SiPMs to fast neutrons produced by hadronic showers.

Prototype tested at CERN (PS-T9)

- Loss of single p.e. sensitivity after 1 - 3 10^9 MeV (μA eq.

- Constant MPK-readout peak gain loss recovered with an increased over-voltage.

More information:

- **Enhanced Neutrino Beams from kaon Tagging**

- **New technique employed to determine the absolute ν_e flux based on the reconstruction of large angle positrons in the instrumented decay tunnel from three-body $K^+ \rightarrow \pi^+ \nu_e \bar{\nu}_\mu$ decays**

- **Reduction of the systematic uncertainties on the knowledge of the initial neutrino flux to 0.1% level.**

Enhanced Neutrino Beams from kaon Tagging

NEW TECHNIQUE EMPLOYED TO DETERMINE THE ABSOLUTE ν_e FLUX BASED ON THE RECONSTRUCTION OF LARGE ANGLE POSITRONS IN THE INSTRUMENTED DECAY TUNNEL FROM THREE-BODY $K^+ \rightarrow \pi^+ \nu_e \bar{\nu}_\mu$ DECAYS

REDUCTION OF THE SYSTEMATIC UNCERTAINTIES ON THE KNOWLEDGE OF THE INITIAL NEUTRINO FLUX TO 0.1% LEVEL.